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Mark Colyvan24

Who’s Afraid of Inconsistent Mathematics?
Mark Colyvan

Abstract
Contemporary mathematical theories are generally thought to be consistent. But it hasn’t 
always been this way; there have been times in the history of mathematics when the consi-
stency of various mathematical theories has been called into question. And some theories, 
such as naïve set theory and (arguably) the early calculus, were shown to be inconsistent. 
In this paper I will consider some of the philosophical issues arising from inconsistent ma-
thematical theories.

1.	 A Five Line Proof of Fermat’s Last Theorem

Fermat’s Last Theorem says that there are no positive integers x, y, and z, and 
integer n > 2, such that xn + yn = zn. This theorem has a long and illustrious 
history but was finally proven in the 1990s by Andrew Wiles. Despite the ap-
parent simplicity of the theorem itself, the proof runs over a hundred pages, 
invokes some very advanced mathematics (the theory elliptic curves, amongst 
other things), and is understandable to only a handful of mathematicians.1 But 
now consider the following proof.

Fermat’s Last Theorem (FLT): There are no positive integers x, y, and z, and 
integer n > 2, such that xn + yn = zn.

Proof: Let R stand for the Russell set, the set of all sets that are not members 
of themselves: R = {x : x∉x}. It is straightforward to show that this set is both 
a member of itself and not a member of itself: R∈R and R∉R. Since R∈R, it 
follows that R∈R or FLT. But since R∉R, by disjunctive syllogism, FLT.

This proof is short, easily understood by anyone with just a bit of high-school 
mathematics. Moreover, the proof was available to mathematicians well before 
Wiles’ groundbreaking research. Why wasn’t the above proof ever advanced? 
One reason is that the proof invokes an inconsistent mathematical theory, 
namely, naïve set theory. This theory was shown to be inconsistent toward the 
end of the 19th century. The most famous inconsistency arising in it was a para-
1	 See S. Singh, Fermat’s Last Theorem: The Story of a Riddle that Confounded the World’s Greatest 

Minds for 358 Years, London 1997, for a popular account of Fermat’s Last Theorem.
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dox due to Bertrand Russell. I invoked Russell’s paradoxical set in the above 
proof.2 Paradoxes such as Russell’s (and, to a lesser extent, others such as the 
Burali-Forti ordinal paradox and Cantor’s cardinality paradox) led to a crisis in 
mathematics at the turn of the 20th Century. This, in turn, led to many years of 
sustained work on the foundations of mathematics. In particular, a huge effort 
was put into finding a consistent (or at least not known-to-be-inconsistent) 
replacement for naïve set theory. The generally-agreed-upon replacement is 
Zermelo-Fraenkel set theory with the axiom of choice (ZFC).3

But the inconsistency of naïve set theory cannot be the whole story of why 
the above proof of Fermat’s Last Theorem was never seriously advanced. After 
all, there was a period of some 30 odd years between the discovery of Russell’s 
paradox and the development of ZFC. Mathematicians did not shut up shop 
until the foundational questions were settled. They continued working, using 
naïve set theory, albeit rather cautiously. Moreover, it might be argued that 
many mathematicians to this day, still use naïve set theory.4 In summary, we 
have a situation where mathematicians knew about the paradoxes and they 
continued to use a known-to-be-inconsistent mathematical theory in the 
development of other branches of mathematics and in applications beyond 
mathematics.

This raises a number of interesting philosophical questions about inconsis-
tent mathematics, its logic and its applications. I’ll pursue two of these issues 
in this paper. The first concerns the logic used in mathematics. It is part of the 
accepted wisdom that in mathematics, classical logic is king. Despite a seri-
ous challenge from the intuitionists in the early part of the twentieth century, 
classical logic is generally thought to have prevailed. But now we have a new 
challenge from logics more tolerant to inconsistency, so-called paraconsistent 
logics. In the next section I will give a brief outline of paraconsistent logics and 
discuss their relevance for the question of the appropriate logic for mathemat-

2	 The paradox is that the Russell set both is and is not a member of itself.
3	 See M. Giaquinto, The Search for Certainty: A Philosophical Account of Foundations of 

Mathematics, Oxford 2002, for an account of the history and H. B. Enderton, Elements of 
Set Theory, New York 1997, for details of ZFC set theory.

4	 After all, so long as you are careful to skirt around the known paradoxes of naïve set theory, it 
can be safely used in areas such as analysis, topology, algebra and the like. Most mathematical 
proofs, outside of set theory, do not explicitly state the set theory being employed. Moreover, 
typically these proofs do not show how the various set-theoretic constructions are legitimate 
according to ZFC. This suggests, at least, that the background set theory is naïve, where there 
are less restrictions on set-theoretic constructions. See Enderton, 1997 and P. R. Halmos, 
Naïve Set Theory, New York 1974, for the details.
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ics. I will suggest that not only are such logics appropriate, but they may already 
be the logic of choice amongst the mathematical community.

The second general topic I will discuss concerns applications of inconsistent 
mathematics, both within mathematics itself and in empirical science. There 
are many questions here but I will focus on two: how can an inconsistent 
theory apply to a presumably consistent world?; and what do the applications 
of inconsistent mathematical theories tell us about what exists? But before we 
broach such philosophical matters, I will first present a couple of examples of 
inconsistent mathematical theories.

2.	 Inconsistent Mathematics

We have already seen Russell’s paradox, the paradox arising from the set of 
all sets that are not members of themselves: R = {x : x∉x}. The paradox arises 
because of an axiom of naïve set theory known as unrestricted comprehension. 
This axiom says that for every predicate, there is a corresponding set. So, for 
example, there is the predicate “is a cat” and there is the set of all cats; there is 
the predicate is a “natural number” and there is the set of all natural numbers. 
So far, so good. The trouble starts when we consider predicates such as “is a 
set” or “is a non-self-membered set”. If there are sets corresponding to these 
two predicates, we get Cantor’s cardinality paradox and Russell’s paradox, re-
spectively. Cantor’s cardinality paradox starts by assuming that there is a set of 
all sets, Ω, with cardinality5 ω. Now consider the power set of Ω: ℘(Ω). Can-
tor’s theorem can be invoked to show that the cardinality of ℘(Ω) is strictly 
greater than the cardinality of Ω. But Ω is the set of all sets and so must have 
cardinality at least as large as any set of sets. Since ℘(Ω) is a set of sets, we 
have a contradiction.

The naïve axiom of unrestricted comprehension was seen to be the culprit 
in all the paradoxes, and mathematicians set about finding ways to limit the 
scope of this overly powerful principle. One obvious suggestion is to simply 
ban the problematic setslike the set of all sets and Russell’s set. This, however, 
is clearly ad hoc. Slightly better is to ban all sets that refer to themselves (either 
explicitly or implicitly) in their own specification. The generally-agreed-upon 
solution achieves the latter by invoking axioms that insure that such problem-

5	 This, in a mathematically precise sense, is the “size” of the set.
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atic sets (and others as well) cannot be formed. This is ZFC. The basic idea is 
to have a hierarchy of sets, where sets can only be formed from sets of a lower 
levela set cannot have itself as a member, for instance, because that would in-
volve collecting sets from the same level. Nor can there be a set of all setsonly 
a set of all sets from lower down in the hierarchy. ZFC has not engendered any 
paradoxes but it has the look and feel of a theory designed to avoid disaster 
rather than a natural successor to naïve set theory. More on this later.

Another important example of an inconsistent mathematical theory is the 
early calculus. When the calculus was first developed in the late 17th century 
by Newton and Leibniz, it was fairly straightforwardly inconsistent. It invoked 
strange mathematical items called infinitesimals (or fluxions). These items are 
supposed to be changing mathematical entities that approach zero. The prob-
lem is that in some places these entities behave like real numbers close to zero 
but in other places they behave like zero. Take an example from the early cal-
culus: differentiating a polynomial such as f(x) = ax2 + bx + c.6 

Here we see that at lines 1–3 the infinitesimal δ is treated as non-zero, for oth-
erwise we could not divide by it. But just one line later we find that 2ax + b + 
δ = 2ax + b, which implies that δ = 0. The dual nature of such infinitesimals 
can lead to trouble, at least if care is not exercised. After all, if infinitesimals 
behave like zero in situation like lines 4 and 5 above, why not allow:

		  2 × δ = 3 × δ

6	 The omission of the limit limδ→0 from the right-hand side on the first four lines of the following 
calculation is deliberate. Such limits are a modern development. At the time of Newton and 
Leibniz, there was no rigorous theory of limits; differentiating from first principles was along 
the lines presented here.
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then divide by δ to yield
		  2 = 3?

This illustrates how easily trouble can arise and spread if 17th and 18th century 
mathematicians weren’t careful. There were rules about how these inconsistent 
mathematical objects, infinitesimals, were to be used. And according to the 
rules in question, the first calculation above is legitimate but the second is 
not. No surprises there. But one can quite reasonably ask after the motivation 
for the rules in question. Such rules about what is legitimate and what is not 
require motivation beyond what does and what does not lead to trouble.

The calculus was eventually, and gradually, made rigorous by the work of Bol-
zano, Cauchy, Weierstrass, and others7 in the 19th century. This was achieved 
by a rigorous (ε−δ) definition of limit.8 So, to be clear, I am not claiming that 
there are any ongoing consistency problems for the calculus. The point is sim-
ply that for over a hundred years mathematicians and physicists worked with 
what would seem to be an inconsistent theory of calculus.9 

3.	 Is the Appropriate Logic for Mathematics Paraconsistent?

Classical logic has it that an argument form known as ex contradictione quodli-
bet or explosion is valid. The argument form was used in my proof of Fermat’s 
Last Theorem at the beginning of this paper. According to explosion any arbi-
trary proposition follows from a contradiction.10 Logics in which this argument 
form is valid are said to be explosive. A paraconsistent logic is one that is not 

	 7	 M. Kline, Mathematical Thought from Ancient to Modern Times, New York 1972.
	 8	 More recently there has been a revival of something like the original infinitesimal idea by 

A. Robinson, Non-standard Analysis, Amsterdam 1966, and J. H. Conway, On Numbers and 
Games, New York 1976, and even an explicitly inconsistent theory of infinitesimals by C. 
Mortensen, Inconsistent Mathematics, Dortrecht 1995.

	 9	 There are also cases where explicitly inconsistent, but non-trivial, theories have been 
developed. See R. K. Meyer, “Relevant Arithmetic”, Bulletin of the Section of Logic of the Polish 
Academy of Sciences 1976, 5:133–137; R. K. Meyer, and C. Mortensen, “Inconsistent Models 
for Relevant Arithmetic”, Journal of Symbolic Logic 1984, 49: 917–929; C. Mortensen, 1995; 
G. Priest, “Inconsistent Models of Arithmetic Part I: Finite Models”, Journal of Philosophical 
Logic 1997, 26(2): 223–235; and G. Priest, “Inconsistent Models of Arithmetic Part II: The 
General Case”, Journal of Symbolic Logic 2000, 65: 1519–1529.

	10	 The negation of Fermat’s Last Theorem, or anything else can be proven just as easily, and 
with pretty much the same proof as the one I opened with.
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explosive. That is, in a paraconsistent logic at least one proposition does not 
follow from a contradiction. Ex contradictione quodlibet is invalid according 
to such logics.

There are many paraconsistent logics in the market place but let me sketch 
the details of one, just to make the discussion concrete. The logic LP, is a three-
valued logic with values 0, i, and 1 (here 1 is “true”, 0 is “false” and i is the other 
value, quite reasonably interpreted as “both true and false”). So far nothing 
unusual; several logics have three values. The interesting feature of LP is that 
the crucial notion of validity is defined in terms of preservation of two of the 
truth values: an argument is valid if whenever the truth value of the premises 
are not 0, the truth value of the conclusion is not 0.11 We also need to define 
the operator tables for the logical connectives (i.e., define how conjunctions, 
disjunctions, and negations get their truth values).12 Negation, conjunctions 
and disjunction (respectively) are given by the following tables:13

¬ ∧ 1 i 0 ∨ 1 i 0
1 0 1 1 i 0 1 1 i 1
i i i i i 0 i i i i
0 1 0 0 0 0 0 1 i 0

From these we see that if some sentence P has the truth value i, its negation, 
¬P, also has the value i, and so does the conjunction of the two: P∧¬P. Now 
take some false sentence Q (i.e., whose truth value is 0) and consider the ar-
	11	 This definition of validity is a natural extension of the usual definition of validity in classical 

logic: an argument is valid if whenever the premises are true, the conclusion is also true. 
The change of focus from truth to non-falsity does not matter in classical logic, since there 
are only two truth values (non-falsity and truth are the same thing). But in a three-valued 
logic, this change of focus to non-truth makes all the difference.

	12	 See JC Beall, and B. C. van Fraassen, Possibilities and Paradox, Oxford 2003; G. Priest, Worlds 
Possible and Impossible: An Introduction to Non-Classical Logic, Cambridge 2001; or G. Priest 
and K. Tanaka, “Paraconsistent Logic”, in E. N. Zalta (ed.), The Stanford Encyclopedia of 
Philosophy 2004, (Winter 2004 Edition), URL http://plato.stanford.edu/archives/win/2004/
entries/logic-paraconsistent for full details and further discussion. The operator tables are the 
same as for the Kleene strong logic K3.

	13	 These operator tables define negation (¬), conjunction (∧), and disjunction (∨) respectively. 
They are read as follows: (i) in the first table, read the right-hand column as giving the truth 
values of the unnegated proposition and the left-hand column as giving the corresponding 
truth value for the negation; (ii) in the second and third tables, read the top row and the left 
column (the ones separated from the main table by horizontal and vertical lines, respectively) 
to represent the truth values of the two conjuncts/disjuncts and the corresponding entry of 
the main table gives the truth value of the conjunction/disjunction.
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gument from P∧¬P to Q. In LP this argument is invalid, since the premise 
P∧¬P does not have the truth value 0 and yet the conclusion Q does have the 
truth value 0. In this logic the “proof” of Fermat’s Last theorem that I gave 
earlier is invalid.

What’s the philosophical significance of all this? Well, it might just be that, 
mathematicians were never tempted by the above proof of Fermat’s Last Theo-
rem because the appropriate logic of mathematical proofs is a paraconsistent 
one. Perhaps this sounds implausible. Surely all we need to do is ask a math-
ematician which logic they use and surely they’ll all answer “classical logic” (or 
perhaps “intuitionistic logic”). For various reasons it might be interesting to 
conduct such sociological research of mathematicians’ beliefs but it will not 
help us answer the question at hand about the logic of mathematics. Our ques-
tion is which logic do mathematicians actually use, and this is determined by 
mathematical practice, not by what mathematicians claim they use. (Indeed, 
most mathematicians are not experts in the differences between the various 
logics available.)

Perhaps, mathematician’s don’t use a paraconsistent logic but, rather, just 
avoid proofs like the five-line proof of FLT given earlier. Indeed, they might 
steer clear of contradictions generally. The latter is hard to do, though, when 
you’re working in a theory that’s known to be inconsistent. But perhaps part of 
what it takes to be a good mathematician is to recognise, not just valid proofs, 
but also sensible ones. On this suggestion, the proof I opened with might be 
formally valid but it’s not sensible, since it involves a contradiction (it takes a 
contradiction as a premise). But this won’t do as a response. First, the contradic-
tion in question can be proven fairly straightforwardly in a very rigorous way 
from, what was at the time, the best available theory of sets; it’s not some im-
plausible proposition without any support. Second, not all arguments involv-
ing contradictions (or taking contradictions as premises) are defective. Take the 
argument from P∧¬P therefore P∧¬P. Surely this is both valid and sensible. 
Putting these issues aside, the most serious problem with this line of response is 
that the notion of a sensible proof is in need of clarification. The advocate of a 
paraconsistent logic has no such problem here; they have only the one notion: 
(paraconsistent) validity and the proof in question fails to be valid.

Even if mathematicians do use classical logic but exercise some (ill-defined) 
caution about what proofs to accept above and beyond the valid ones, perhaps 
they ought to use a paraconsistent logic. As I’ve already suggested, one reason 
for thinking this is that the paraconsistent approach provides a more natural 
way to block the undesirable proofs. But there are other reasons to entertain 
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a paraconsistent logic. There are many situations in mathematics where the 
consistency of a theory is called into question but without a demonstration of 
any inconsistency. Consider, for example, the earliest uses of complex numbers, 
numbers of the form x + yi, where i = −1  and x and y are real numbers. There 
was a great deal of debate about whether it was inconsistent or just weird to 
entertain the square root of negative numbers.14 Moreover, it was not just the 
status of complex analysis that was at issue. If the theory of complex analysis 
turned out to be inconsistent, everything that depended on it, such as some 
important results in real analysis, would also be in jeopardy. Adopting a para-
consistent logic is a kind of insurance policy: it stops the rot from spreading 
too swiftly and too farwhether or not you know about the rot.

Perhaps the most interesting reason to entertain a paraconsistent logic in 
mathematics is that with such a logic in hand, naïve set theory and naïve 
infinitesimal calculus can be rescued.15 There is no need to adopt their more 
mathematically sophisticated replacements: ZFC and modern calculus. There 
are a couple of pay-offs here. First, both naïve set theory and naïve infinitesimal 
calculus are easier to teach and learn than their modern successors. In naïve set 
theory there is no need to deal with complicated axioms designed to block the 
paradoxes; the easily understood and intuitive unrestricted comprehension is 
allowed to stand. With naïve calculus there is no need to concern oneself with 
the subtle modern (ε−δ) definition of limit; infinitesimals are allowed back in 
the picture.16 The second pay-off is related to the first and concerns the intu-
itiveness of the theories in question. At least in the case of set theory, the naïve 
theory is more intuitive. ZFC, for all its great power and acceptance, remains 
unintuitive and even ad hoc. There is no doubt that naïve set theory is the more 
natural theory. Similar claims could be advanced in relation to naïve infinitesi-
mal calculus over modern calculus, though the case is not as strong here.

4.	 Applying Inconsistent Mathematics

I now turn to application of inconsistent mathematics. There are many inter-
esting issues here, and I’ll say just a little about a few of these. The first issue 

	14	 See M. Kline, 1972, for some of the relevant history of this debate.
	15	 C. Mortensen, 1995.
	16	 As they are in non-standard analysis, but non-standard analysis is also rather difficult to teach 

and learn.
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is that inconsistent mathematics adds a new twist to an old problem known 
as the “unreasonable effectiveness of mathematics”.17 The puzzle is to explain 
how an a priori discipline like mathematics can find applications in a posteriori 
science. As Mark Steiner puts it:

[H]ow does the mathematiciancloser to the artist than the explorerby 
turning away from nature, arrive at its most appropriate descriptions?18

This problem has attracted the attention of physicists and mathematicians, 
but few philosophers have been drawn to it. Part of the reason for this is that 
several of the philosophers who have written on the problem seem to think 
that something like the following holds, and is all that’s required in order to 
explain the puzzle.

Mathematicians develop structures, often motivated by, or at least inspired by, 
physical structures. The mathematician’s structures then (unsurprisingly) turn 
out to be similar (or even isomorphic) to various physical structures.19 

But the fact that inconsistent mathematics, such as the early calculus, finds 
wide and varied applications in empirical science, raises problems for this line 
of thought. After all, assuming, as most of us do, that the world is consistent, 
how can an inconsistent mathematical theory be similar in structure to some-
thing that’s consistent? There is a serious mismatch here. It certainly cannot 
be that the inconsistent mathematics in question is isomorphic to the world, 
unless one is prepared to countenance the possibility that the world itself is 
inconsistent. I’m not suggesting that the above thought about how to dissolve 
the puzzle of the unreasonable effectiveness of mathematics is completely off 
the mark, just that it cannot be the whole story.20

	17	 See the original paper on this, E. P. Wigner, “The Unreasonable Effectiveness of Mathematics 
in the Natural Sciences”, Communications on Pure and Applied Mathematics 1960, 13: 1–4, as 
well as M. Colyvan, “The Miracle of Applied Mathematics”, Synthese 2001, 127: 265–278; M. 
Colyvan, “Mathematics and the World”, in A. D. Irvine (ed.), Handbook of the Philosophy of 
Science Volume 9: Philosophy of Mathematics, North Holland forthcoming; and M. Steiner, 
The Applicability of Mathematics as a Philosophical Problem, Cambridge MA 1998.

	18	 M. Steiner, “The Applicability of Mathematics”, Philosophia Mathematica 1995, 3:129–156, 
see p. 154.

	19	 See, for example, M. Balaguer, Platonism and Anti-Platonism in Mathematics, New York 
1998, pp. 142–144, and P. Maddy, Second Philosophy: A Naturalistic Method, Oxford 2007, 
pp. 329–343, for views along these lines.

	20	 It is also worth noting that sometimes, when there is concern over the consistency of a 
mathematical theory (such as the early use of complex numbers), confidence in the theory 
increased when the theory was found to enjoy widespread applications.
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The second issue in relation to applying inconsistent mathematics takes us 
into metaphysics. There is a much-discussed argument in the philosophy of 
mathematics known as the indispensability argument. This is an argument for 
belief in the reality of mathematical objectsPlatonismfrom the fact that 
mathematical theories are indispensable to our best scientific theories.21 Ac-
cording to this line of thought, we should be committed to the existence of 
all and only the entities that are indispensable to our best scientific theories 
and, as it turns out, mathematical entities are indispensable to these theories. 
This leads to the conclusion that we ought to believe in the existence of math-
ematical entities, along with electrons, dark matter, pulsars and other entities 
indispensable to our best scientific theories. Again, applications of inconsis-
tent mathematics adds a new twist. There have been times when inconsistent 
mathematical theories (most notably the early calculus) have been indispens-
able to a broad range of scientific theories. 17th and 18th century calculus was 
indispensable to mechanics, electromagnetic theory, gravitational theory, heat 
conduction and the list goes on. It seems that if one subscribes to the indis-
pensability argument (as I do) then there’s a rather unpalatable conclusion 
beckoning: sometimes we ought to believe in the existence of inconsistent  
objects.22

It is not clear what to make of this argument for the existence of inconsistent 
objects. Is it a reductio of the original indispensability argument? Does it tell us 
that consistency should be an overriding constraint in such matters? If so, on 
what grounds? Perhaps it is not as crazy as it sounds to believe in inconsistent 
mathematical objects. It is fair to say that the jury is still out on these issues, 
with much more work and detailed examination of case studies required before 
a sensible verdict can be delivered.

Finally, there has been some very interesting work on using inconsistent 
mathematical theoriesmore specifically, inconsistent geometryto model 
inconsistent pictures such as those of M. C. Escher and Oscar Reutersvaard 

	21	 See M. Colyvan, The Indispensability of Mathematics, New York 2001; M. Colyvan, 
“Indispensibility Arguments in the Philosophy of Mathematics”, in E. N. Zalta (ed.), The 
Stanford Encyclopedia of Philosophy, (Spring 2008 edition, forthcoming), URL=<http://plato.
stanford.edu/archives/spr2008/entries/mathphil-indis/>; H. Putnam, Philosophy of Logic, 
New York 1971; and W. V. Quine, “Success and Limits of Matematization”, in Theories and 
Things, Cambridge 1981 for details 

	22	 M. Colyvan, “The Ontological Commitment of Inconsistent Theories”, Philosophical 
Studies, forthcoming; and C. Mortensen, “Inconsistent Mathematics: Some Philosophical 
Implications”, in A. D. Irvine (ed.), Handbook of the Philosophy of Science Volume 9: Philosophy 
of Mathematics, North Holland, forthcoming.
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(e.g., Escher’s Belvedere). Chris Mortensen23 has argued convincingly that 
consistent mathematical theories24 of such pictures do no do justice to the 
cognitive dissonance associated with seeing such pictures as impossible. Argu-
ably, the dissonance arises from the perceiver of such a picture constructing 
an inconsistent mental model of the situationan impossible spatial geom-
etry. Any consistent mathematical representation of this inconsistent cognitive 
model will fail to capture its most important quality, namely its impossibil-
ity. Inconsistent mathematics, on the other hand, can faithfully represent the 
inconsistent spatial geometry being contemplated by the perceiver and thus 
serve as a useful tool in exploring such phenomena further. These applica-
tions of inconsistent mathematics should hold interest beyond philosophy. 
Indeed there are immediate applications in cognitive science and psychology. 
But such work is very new and the full import of it has not yet been properly  
appreciated.25

5.	 Conclusion

Inconsistent mathematics has received very little attention in mainstream phi-
losophy of mathematics and yet, as I have argued here, there are several interest-
ing philosophical issues raised by it. Moreover, some of these issuessuch as 
the ontological commitments of inconsistent mathematical theories and the use 
of paraconsistent logic as the logic for mathematicsbear directly on contem-
porary debates in philosophy of mathematics. Other issuessuch as the appli-
cation of inconsistent mathematics to model inconsistent picturespromise 
to take philosophy of mathematics in new and fruitful directions. For my 
money, though, the biggest issue concerns possible insights into the relation-
ship between mathematics and the world. This is a central problem for both 
philosophy of mathematics and philosophy of science. 

I believe that there is a great deal to be learned about the role of mathemati-

	23	 C. Mortensen, “Peeking at the Impossible”, Notre Dame Journal of Formal Logic, 38(4): 
527–534; C. Mortensen, “Inconsistent Mathematics”, in E. N. Zalta (ed.), The Stanford 
Encyclopedia of Philosophy, (Fall 2004 edition), URL=<http://plato.stanford.edu/archives/
fall/2004/entries/mathematics-inconsistent/>; and C. Mortensen forthcoming.

	24	 Such as in L. S. Penrose and R. Penrose, “Impossible Objects, a Special Kind of Illusion”, 
British Journal of Psychology 1958, 49: 31–33; and R. Penrose, “On the Cohomology of 
Impossible Pictures”, Structural Topology 1991, 17: 11–16.

	25	 Although see C. Mortensen forthcoming.
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cal modelsboth consistent and inconsistentin scientific theories, by pay-
ing closer attention to the use of inconsistent mathematics in applications. 
Perhaps focussing our attention on the consistent mathematical theories has 
misled us to some extent. If this is right, we won’t have the complete picture 
of the mathematics–world relationship until we understand how inconsistent 
mathematics can be so useful in scientific applications.26

	26	 I’d like to thank Stephen Gaukroger and Audrey Yap for helpful conversations on the history 
of the calculus, and Adam La Caze and Fabien Medvecky for comments on an earlier draft. 
I have also benefited from several conversations with Chris Mortensen about inconsistent 
mathematics. Work on this paper was funded by an Australian Research Council Discovery 
Grant (grant number DP0209896).


