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GG
auss referred to mathematics as the queen of
sciences. His remark was intended to flag the
privileged and exalted position that mathematics

occupies within the sciences. And just as royalty is set apart
from its subjects, so too is mathematics set apart from the
rest of science. Mathematics is certain, its results stand for
all time, and it proceeds by a priori methods. The rest of
science, by contrast, is uncertain, fallible, and a posteriori.
In what follows, I’ll highlight another interesting difference
between mathematics and the rest of science. This differ-
ence concerns the way explanation operates in
mathematics and the surprising way mathematical expla-
nations can feature in broader scientific explanations.

First a bit of background on scientific explanation. There
are a number of important questions that naturally arise
about explanation. When is an explanation required? How
do we recognise explanations as explanations? What is an
explanation? There are no easy answers to any of these
questions, but for present purposes we can take partial
answers to the first two questions to be that an explanation
is called for when an appropriate ‘‘why’’ question is
pressing. Why did the car skid off the road? Why did the
anode emit x-rays? An explanation in its most general sense
is an answer to such ‘‘why’’ questions, and in answering
such questions, explanations reduce mystery. Exactly how
an explanation reduces mystery brings us to the third of the
aforementioned questions.

There are many competing philosophical accounts of
explanation and I won’t try to do justice to them here. The
topic has a long and distinguished history going back to
ancient times. In what follows, I will explore two types of
mathematical explanation and demonstrate how they put
pressure on one common and intuitively appealing account
of explanation. The account in question, the causal
account, holds that an explanation consists in providing the
causal history of the event in need of explanation. After the
causal history is presented, the event in question is no
longer thought to be mysterious (i.e., because the posterior
probability of the event, conditional on the causal history,
is higher than the unconditional prior probability of the
event in question). Now I turn to mathematical
explanation.

Intramathematical Explanation
It is well known that some, but not all, proofs are
explanatory. Explanatory proofs tell us why the theorem in
question is true, whereas the nonexplanatory proofs merely
tell us that the theorem in question is true [11]. With an
explanatory proof we have one mathematical fact being
explained by another (or other) mathematical fact(s). Call
such cases of explanation within mathematics intramath-
ematical explanations.

An example will help. Consider the well-known Euler
result that there is no way of traversing the seven bridges of
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Königsberg once and only once in a single trip, beginning
and ending in the same place.

In its mathematical formulation, this becomes, there is
no Eulerian cycle for the following multigraph.

A

C

B

D

The crucial result here is that a connected graph has an
Eulerian cycle iff it has no vertex with an odd degree [17].
That is, there are no vertices (or nodes) with an odd
number of edges meeting there.1 The central idea of the
graph-theoretic proof is that on any Eulerian cycle, every
arrival at a vertex must be accompanied by a departure; an
odd valence for a vertex signifies an arrival without a cor-
responding departure or a departure without a
corresponding arrival. Indeed, this is the core explanatory
insight of the graph-theoretic proof.

Compare such a proof with a brute-force, combinatorial
proof that there is no Eulerian cycle for the previously
mentioned multigraph. The latter would indeed deliver the
result, but armed only with such a proof, we would be
none the wiser as to why there is no Eulerian cycle for the
multigraph in question. We’d just know that all options had
been tried and none of them worked. Moreover, the graph-
theoretic proof is more general. It shows, for example, that

knocking out one of the edges from C to A will not help.
The brute-force method would need to start over again to
show that there is no Eulerian cycle for the modified
graph.2

What is the sense of explanation at work here? It is not
the causal sense I described earlier, common in science and
in everyday life. When we ask, for example, why the car
accident occurred, we are typically looking for responses
that appeal to driver fatigue, the icy road, the velocity of the
vehicle, and so on. Sometimes, however, we might appeal
to more general background conditions such as ‘‘it is a
dangerous road,’’ or ‘‘he’s not a very good driver,’’ or the
like. These more general conditions offer interesting com-
plements to causal explanations and, in some contexts, it is
the more general conditions that we are interested in [3].
Still, in many legal, scientific, and everyday contexts when
we seek an explanation, what we are after is the causal
history of the accident: all the temporally-prior events or
conditions that ultimately resulted in the accident. But
mathematical explanation is not in the business of provid-
ing causal histories. Talk of causes is completely out of
place in mathematics. The existence of the number i
caused the polynomial X2 þ 1 to have two roots? No! The
existence of i is the reason that X2 þ 1 has two roots, but it
is a category mistake to think of i as causing anything.
Numbers and other mathematical objects do not seem to be
the right kind of things to be in the causal nexus of the
universe.3

It might be tempting to suggest that explanatory proofs
don’t provide causal explanations but something stronger:
deductive explanations. After all, the conclusion of a chain
of deductive reasoning, as we have in the proof of a
mathematical theorem, follows of necessity. It doesn’t
merely follow because of contingent events in the past.
Although this is right—mathematical consequence is typi-
cally deductive and this is stronger than causal
consequence—deduction cannot be the key to mathemat-
ical explanations. If it were, all proofs would be
explanatory, but this is clearly not the case. For example,
the brute-force, combinatorial proof mentioned earlier also
delivers a deductive result. But, as we have seen, this proof
is not explanatory. The source of mathematical explanation
must lie elsewhere.

Perhaps mathematical explanation relates to the struc-
ture of the proof.4 We have a variety of different proof
structures in mathematics: for example, there is conditional
proof, reductio ad absurdum, finite induction, transfinite
induction, disjunctive syllogism, universal generalisation,
and proof by cases, to name a few. But there are problems
with the view that the explanatoriness of a proof rests
entirely on its structure. Apart from anything else, it is often
relatively easy to transform the proof structure without any

Figure 1. The seven bridges over the River Pregel in

Königsberg (in Euler’s time) [18].

1Or to revert to the original problem: the walk is possible so long as it does not involve an odd number of bridges with one end on the same land mass.
2The graph-theoretic proof explains the mathematical fact that there is no Eulerian cycle for the above multigraph. That’s the intramathematical explanation arising from

the explanatory proof. But the proof also plays a crucial role in explaining why the previously described walk around Königsberg cannot be completed. The latter is the

related extramathematical fact. Shortly I’ll have more to say about this quite different kind of explanation.
3Indeed, this is one of the reasons many philosophers have misgivings about the existence of mathematical objects. The causal inertness of mathematical objects

makes it difficult to understand how we can have mathematical knowledge [4].
4There is also an interesting question about the status of pictures in proofs: can pictures serve as proofs and do they, in some cases, deliver genuine understanding [5]?
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substantial change to the main body of the proof. Think, for
example, of how, with a small change in the setup, a
reductio proof of the infinitude of the primes can be turned
into a proof by universal generalisation [8].

A more promising strategy is to look below the level of
the structure of the proof and at the details of the proof.
Here we find two quite distinct lines of thought arising.
One is that a proof is explanatory because it proceeds via
the ‘‘right kind’’ of paths. What are the right kinds of paths?
Perhaps they are paths that connect results to other results
in the same domain of mathematics. This might be why
elementary proofs are valued in number theory: they
deliver number-theoretic results via number-theoretic
means, without excursions into complex analysis. On the
other hand, sometimes a proof is seen to be explanatory
because it builds bridges between different areas of math-
ematics, often by showing that a result in one area is a
special case of a more general result. Category theory
proofs of results in group theory (such as the Free Group
Theorem) may be instances of this [15, p. 123]. If this is
right, there are two quite distinct kinds of explanation
operating in mathematics: one local and the other more
global and unifying.

Extramathematical Explanation
So far we have been considering the explanation of one
mathematical fact by another. Contrast this intramathemati-
cal explanation with another kind of explanation in which
mathematics can feature: the explanation of some physical
phenomenon by appeal to mathematics. Call the latter ex-
tramathematical explanation. This is more controversial.
Although our understanding of intramathematical explana-
tion leaves a lot to be desired, its existence is widely
accepted. But there is a rather heated philosophical debate
surrounding the very existence of extramathematical
explanation.5

What’s all the fuss about? The main reason that some
philosophers object to the extramathematical explanation is
that it would seem to commit them to Platonism: the view
that mathematical objects, such as sets, numbers, functions,
and the like, exist. Why? If you subscribe to a principle
known as inference to the best explanation, you’re com-
mitted to all the entities that play an explanatory role in
your best science: electrons, quarks, black holes, gravita-
tional waves, and so on. Add mathematical objects to this
list and it just gets too weird for some philosophers’ tastes.
Unless they are willing to give up on the principle of
inference to the best explanation, those who find Platonism
unacceptable are forced to deny that there are any extra-
mathematical explanations. Be that as it may, there seems
to be no shortage of examples of mathematics apparently
playing crucial explanatory roles in science. Here I’ll
quickly look at a couple of these.

The first involves the Honeycomb Theorem. Charles
Darwin observed the incredible regularity of hexagons in
honeybee hives and conjectured that the hexagonal shape

was in some sense optimal [9]. Darwin was right, but vin-
dication took some time. It finally came in 2001 from a
mathematical theorem: the Honeycomb Theorem [12]. The
Honeycomb Theorem states that a hexagonal grid repre-
sents the optimal way to divide a surface into regions of
equal area with the least total perimeter. Of course, the
mathematics on its own doesn’t explain why honeybees
build hexagonal hives. We also need some biology: wax is
expensive so bees need to minimise its use (hence min-
imising total perimeter) while maximising the area for
honey storage (there’s no wasted space in the hive). It’s
also worth noting that this is a tiling problem, not a sphere-
packing problem. This is because bees need access to the
cells. Now throw in some evolutionary theory to explain
why less-efficient bees have been selected against, and we
are left with hexagonal hives. Although the full explanation
involves a mixture of biology and mathematics, arguably
it’s the mathematics that’s doing the heavy lifting [14].

Another phenomenon whose explanation involves
mathematics appears in the life cycle of cicadas. There are
seven species of North American cicadas in the genus
Magicicada, each with prime-number life cycles. These
cicadas emerge from the ground en masse once every 13 or
17 years, depending on the species. The explanation biol-
ogists offer for these unusual life cycles is in terms of
evolutionary advantage. A periodic organism trying to
avoid a periodic predator needs to minimise the number of
years of overlap between itself and the predator. It is rather
straightforward to prove that having a prime life cycle does
this [2]. If a life cycle has a prime period, predators need
very specific periods to overlap on a regular basis. For
example, the predator would need the same prime life
cycle, suitably coordinated. Again we see that the expla-
nation relies on mathematics—in this case some elementary
number theory. Moreover, the mathematics seems to be
doing the important work in the explanation.

This last case also highlights an interesting general point
about extramathematical explanations. These explanations
typically tell us that not only is the world thus and so, but,
in a very important sense, it had to be thus and so. The
cicada life cycles are apparently squeezed from above by
(not well-understood) biological considerations and from
below by the fact that small primes are not as effective for
predator avoidance. The remaining window, arguably, has
four primes: 7, 11, 13, and 17. The periods found in nature
are the largest primes in this set. These represent the
optimal predator-avoidance strategies, subject to various
biological constraints.

There are many other cases of such extramathematical
explanations discussed in the literature.6 What is common
to them all is that the mathematics is crucial to the success
of the explanation, and if there is any mathematics-free
alternative available, such explanations are impoverished
in various ways. In particular, the mathematics-free, causal
explanations get bogged down in the contingent detail and
fail to reveal the big picture. For example, a causal account

5The main proponents of extramathematical explanation are Alan Baker [2], Mary Leng [13], and me [6, 7].
6Other examples are the Euler graph-theory explanation of why the bridges of the Königsberg walk cannot be completed, why the physical act of squaring the circle is

impossible, and why the Kirkwood gaps in the asteroid belt have the specific locations they do. See [16] for discussions of some of these examples.
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of the Kirkwood gaps in the asteroid belt would give the
causal histories of all the asteroids in the vicinity and would
show why each asteroid fails to be orbiting in one of the
Kirkwood gaps. Without the mathematical analysis, it looks
as though it’s a mere coincidence that there are no asteroids
in the Kirkwood gaps. But it is no coincidence. The Kirk-
wood gaps are unstable orbits, and this crucial piece of the
story is delivered by the mathematical explanation [8,
chap. 5]. Part of the power of mathematics is that it enables
abstraction away from the often-irrelevant, contingent
details, and it goes straight to the core of the explanation.

What Is Explanation?
It appears that mathematics can deliver what we intuitively
recognise as both intra- and extramathematical explana-
tions, and, as we have seen, neither of these conform to the
causal-history model of explanation. This suggests that
further investigation of mathematical explanation could
profitably contribute to a more general understanding of
the nature of explanation. Mathematical explanation is also
important for debates over Platonism and its rivals. After all,
if an entity plays an indispensable explanatory role in one
of our best scientific theories, this is taken by many scien-
tists and philosophers alike to be a sure sign that the entity
in question exists. The existence of extramathematical
explanation would thus seem to lend support to Platonism.

Philosophers of mathematics have been largely inter-
ested in extramathematical explanation, and mathematicians
have long been interested in intramathematical explanation.
But the ease with which we accept the application of intra-
mathematical explanations to physical phenomena, as in
the Honeycomb Theorem case, suggests that these two
kinds of mathematical explanations are closely related.
Philosophers of mathematics and mathematicians really
ought to hang out together more (and they would both
benefit from discussions with philosophers of science). For
a start, it would be extremely useful for philosophers to
have a good stock of proofs considered by mathematicians
to be explanatory and proofs not considered to be
explanatory.7 It would also be good to have mathemati-
cians’ thoughts on what distinguishes explanatory proofs
from the others. It would be interesting to explore whether
proof is the only locus of explanation. After all, if one kind
of intramathematical explanation lies in unifying branches
of mathematics, perhaps domain extensions and even
generalised definitions could be thought to facilitate
explanation. These are all issues on which this philosopher
of mathematics would welcome the opinions of mathe-
maticians.
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