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Abstract

A proof of a mathematical theorem tells us that the theorem is
true (or should be accepted), but some proofs go further and tell us
why the theorem is true (or should be accepted). That is, some, but
not all, proofs are explanatory. Call this intra-mathematical explanation
and it is to be contrasted with extra-mathematical explanation, where
mathematics explains things external to mathematics. In this paper
we focus on the intra-mathematical case. We consider a couple of
examples of explanatory proofs from contemporary mathematics. We
determine whether these proofs share some common feature that may
account for their explanatoriness. We conclude with two plausible,
but competing, accounts of mathematical explanation and suggest
that there might be more than one kind of explanation at work in
mathematics.

1 Introduction

Explanation in mathematics is puzzling. Mathematicians tell us that
some proofs are explanatory while others are not.1 That is, all proofs
establish the theorem in question but some proofs go further and ex-
plain why the theorem holds.2 But what kind of thing is an explana-
tory proof? Some of the usual candidates for explanation in science
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1For example, see [18, p. 879].
2Although we occasionally use the less clumsy realist language of mathematical “truths”

and “facts”, in this paper we wish to sidestep realism–anti-realism issues. If you’re a math-
ematical realist, explanatory proofs tell us why the theorem is true. If you’re a mathematical
anti-realist you may not believe that the theorem in question is true. You might, instead,
think that the theorem is “true-in-the-fiction of mathematics” or some such. In any case,
you can, and should, still countenance the distinction between explanatory proofs and non-
explanatory ones. The former, may, for example, provide an intra-fiction explanation of
the fictional result, just as there are explanations in literary fiction of why some fictional
character behaved as she did.
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do not seem to work for mathematics. For example, some take expla-
nation to be closely related to causal history but there is no place for
causation in mathematics. Similar difficulties arise for counterfactual
and interventionist accounts of explanation; mathematics, if true, is a
body of necessary truths, so there does not seem to be any room for
counterfactuals or intervening.3

If we focus on proofs as the locus of explanation in mathemat-
ics,4 one rather natural thought is that mathematical explanations
have something to do with the structure of the proof—the explana-
tory proofs have some especially desirable structure that reveals the
reason for the theorem holding.5 Although we will not argue against
this view here,6 we find it implausible that explanation can be charac-
terised entirely in terms of the structure of the proof. In any case, in
this paper we will dig a little deeper—below the level of the structure
of the proofs.

To be clear about our target, it’s worth distinguishing the kind of
explanation we’re interested in here from another that’s prominent in
the literature. Intra-mathematical explanation is the explanation of one
mathematical fact in terms other mathematical facts. This is to be con-
trasted with extra-mathematical explanation, which is the explanation
of some physical phenomenon via appeal to mathematical facts. The
existence of such extra-mathematical explanation is still somewhat
controversial.7 We will be firmly focussed on intra-mathematical ex-
planation. More specifically, our interest is in the intra-mathematical
explanation found in proofs of theorems.8

2 A Few Words About Methodology

In this paper we will look, in some detail, at two different proofs of an
important result in group theory: The Free Group Theorem. Neither
the theorem nor the two proofs are straightforward but we make no
apology for this. It is, in our view, important to tackle examples from
more advanced mathematics. It would be all too easy to be misled
by focussing on elementary examples from high school mathematics.
What is required is a systematic study of proofs from various areas

3Although see [7] for some moves in this direction.
4It’s not clear that proofs are the only place where explanation arises. For example, it

might be argued that we find explanation in domain extensions [12, chap. 5].
5See for example an exchange between Alan Baker [4] and Marc Lange [23] on the

explanatoriness of proofs by mathematical induction.
6See [12, chap. 5] for such an argument. For example, in some cases reductio proofs

can be transformed into constructive proofs and, in such cases, it seems implausible that
the former are not explanatory while the latter are. In such cases, either they are both
explanatory or neither are. Either way, there’s more to it than merely the structure of the
proof.

7See [2, 3, 5, 6, 9, 10, 11, 27], for examples of extra-mathematical explanations.
8In the past this has received less attention in the philosophical literature on explanation

[34, 36, 37], although that seems to be changing, with a number of recent contributions to
this topic [12, 13, 19, 17, 24, 25, 29, 30, 32, 33].
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of contemporary mathematics—analysis, abstract algebra, topology,
number theory and so on. The examples also need to go beyond high-
school mathematics.9 Of course, there will be limits to how advanced
the mathematics can be in order for philosophers of mathematics—
who are, after all, typically not professional mathematicians—to un-
derstand it and be able to draw reliable philosophical morals.10 Still,
those wishing to take our word on the technical details of the proofs
and our interpretations of them, can skip to the discussion for the
philosophical upshot.

Ideally, we need the judgements of mathematicians on which
proofs are, and which are not, explanatory. But mathematicians are no-
torious for covering their tracks in their written work and rarely com-
mit to print judgements of the explanatory powers of proofs. But as
anyone who has spent time with mathematicians knows, such judge-
ments are forthcoming in the tea room, in the pub, and even in the
class room. In order to get started on this project we need to scour
the literature for the few places where mathematicians do offer judge-
ments on whether the proofs in question are explanatory.11 Beyond
this, talking to, or formally surveying, mathematicians are the obvi-
ous ways forward. We decided to informally survey mathematicians
on discussion forums, where some, at least, are inclined to give their
opinions about such matters.12 The forum discussion led to our inves-
tigation of the Free Group Theorem, in part because the mathematical
community seemed to be divided on which proofs of this theorem are
explanatory. It’s often more fruitful to start with easy cases, but we
were intrigued by this theorem and the dispute over its proofs.13

To anticipate our conclusions and help see where we are head-
ing with the proofs and subsequent discussion, we suggest that the
two proofs in question have different and competing claims for ex-
planatory virtue. The first proof—the so-called constructive proof14—
delivers the theorem in question via a detailed construction of the
group in question and can be thought to be aligned with a model
of reductive explanation in science. The second proof—the abstract
proof—delivers the theorem by showing how it is one of a more gen-
eral class of such theorems and as such, this proof can be thought to
be aligned with a unificatory model of explanation. Indeed, the fact
that this theorem has two such proofs is one of the reasons we chose

9Marc Lange has already started this project in his paper [24] in which he discusses
some more advanced examples. The present paper can be seen as another step in that
direction, although the conclusions we draw from our example are not the same as Lange’s
conclusions.

10Moreover getting on top of proofs from several different areas of contemporary mathe-
matics can be challenging, even for professional mathematicians.

11For example: [1], [14] and [20].
12See [21] for some interesting formal survey-based work getting at mathematicians judg-

ments about the virtues of various mathematical proofs.
13We intend to follow up this present paper with further examples to see if our rather

speculative conclusions hold up elsewhere in mathematics.
14This name is not meant to suggest that the proof is intuitionistically valid; “constructive”

is being used in the non-technical sense here.
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to focus on it as our case study.15

Another reason for focussing on the Free Group Theorem is that it
is an important result; it is a central result in group theory, especially
with respect to the presentation of groups, but it is also important
for other, related areas of mathematics (e.g. hyperbolic geometry).
Moreover, the result and the proofs we discuss are interesting in their
own right. Enough about methodology, let’s get into the mathematics.

3 The Free Group Theorem

First, recall the definition of a group: A group (G, ·) is a set of elements
G together with a binary operation that together satisfy the four funda-
mental properties of closure, associativity, the identity property, and
the inverse property.

1. Closure: If a and b ∈ G, then a · b is also in G.
2. Associativity: The group operation is associative, i.e., for all

a, b, c ∈ G, (a · b) · c = a · (b · c).
3. Identity: There is an identity element e ∈ G such that e·a = a·e = a,

for every a ∈ G.
4. Inverse: There must be an inverse of each element: for each

element a ∈ G, the set contains an element a−1 such that a · a−1 =
a−1
· a = e.

Definition of Free Group: Let X be a set. Group F is free on X if
there is a map f : X→ F and for any group K and map k : X→ K there
is a unique group homomorphism Φ : F→ K such that k = Φ ◦ f , that
is, so that the following diagram commutes.

X

F K

f k

Φ

(This is sometimes expressed in terms of a universal property, where
the property in question is that which characterises free groups up to
isomorphism. It is the property of being such that the above diagram
commutes.)

The Free Group Theorem asserts the existence of free groups. More
formally, it states that for any set A, there exists a free group on A. (Or
equivalently: Given a set A, there exists a free group with basis A.)

15It is important to note that the salient difference between the two proofs is not simply
that the abstract proof delivers mere existence whereas the constructive proof constructs an
example. There are several interesting differences between the two proofs and this is why
we run through the proofs in some detail. We do not wish to give a superficial gloss on the
two proofs but the differences highlighted in the main text of this paragraph do strike us as
central.
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4 Free Group Theorem: The “Constructive”
Proof

Here we sketch a constructive proof of this result.16 The proof has
two phases: we first use A to construct a group, and define a function
from A to that group; and we then prove that together this group and
function form a free group on A. (In fact the second phase involves
further construction, as we’ll see.)

Given an arbitrary set A, we first use A to construct a group. The
members of our group will be certain kinds of “words”, whose “let-
ters” are built up from members of A. We define the alphabet on A as
the product A × {−1, 1}. Each letter in our alphabet is thus an ordered
pair 〈a, ε〉 where a ∈ A and ε = ±1. For convenience, we abbreviate
〈a, 1〉 as a and 〈a,−1〉 as a−1, and we call a and a−1 rivals.17 (At this stage
we avoid the term ‘inverses’ since it presupposes a group operation,
surrounding which there will be some complications.) (Example: if
our set A is {a, b}, then the alphabet over A is {a, b, a−1, b−1

}.) We then
define a word on A as a string of alphabet letters of finite length. (Ex-
ample: aba−1b is a word of length 4.) The empty word, written 1, has no
letters and length zero. We define the rival of a word w, written w−1, as
the word obtained by taking the rival of each letter of w and reversing
their order. (Example: the rival of aab−1 is ba−1a−1.) The concatenation
of words v and w is written vw. This is the word obtained by affixing
the head of w to the tail of v. (Example: if v = ab and w = ab−1 then
vw = abab−1.)

Now, it would be nice if we could take our group on A to be the set
of words on A, equipped with the operation of concatenation. But this
won’t work. While concatenation is an associative binary operation on
words, and the empty word 1 will serve nicely as an identity element,
the problem lies with inverses: nonempty words have no inverses
under concatenation. (Example: there is no word that yields 1 when
concatenated with ab.) The set of words on A is not a group under
concatenation.

To address this problem, we define a special class of words. Call
a word reduced if it contains no adjacent rival letters. (Example: aba−1

is reduced but a−1ab is not.) Note that the empty word 1 is reduced.
The set of reduced words on A, written W, will be the base set of our
group.18

Again though, things are not as straightforward as we’d like. To
make W into a group, we’ll need to specify a binary operation on
W. But concatenation is not a binary operation on W, because the
concatenation of two reduced words need not be reduced. (Example:

16Our proof sketch relies heavily on [35, 343–5], where further details can be found.
17These abbreviations assume that we don’t already have a, a−1

∈ A. If we did, then we’d
have distinct letters 〈a−1, 1〉 and 〈a,−1〉 both abbreviated as a−1. In this unfortunate case we
can either choose an alternative notation for 〈a,−1〉 (perhaps a′) or maintain the ordered pair
notation.

18In general, a base set is a kind of building block. Here we mean that W will be the set
from which we are able to build the group in question.
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ab and b−1a.)
Consequently, we define a second binary operation on W, called

juxtaposition and written ∗, as follows. Let v,w ∈W be reduced words.
Let u be the longest tail of v whose rival u−1 is a head of w. (There’s
always some such u: even in the case where vw is reduced, we have
u = 1.) It follows that there exists a head v′ of v and a tail w′ of w
such that vw = v′uu−1w′. (Furthermore, we know that u, u−1, v′ and w′

are all reduced, because v and w are.) Deleting central rivals gives us
v′w′, which is guaranteed to be reduced. (If it weren’t, then u wouldn’t
have been the longest tail of v such that u−1 is a head of u: we could
have extended u by at least one letter.) We thus have the Sandwich
Lemma: for any reduced words v,w ∈ W, there exist reduced words
u, v′ and w′ such that (i) v = v′u (ii) w = u−1w′ and (iii) v′w′ is reduced.
This allows us to define the juxtaposition of v and w by v ∗ w = v′w′.
Intuitively, juxtaposition amounts to concatenation with cancelling of
central rivals. (Example: If v = aab and w = b−1a−1bb, then u = ab
and u−1 = b−1a−1, so we have v′ = a and w′ = bb, and so v ∗ w = abb.)
Juxtaposition (unlike concatenation) is a binary operation on W, since
a juxtaposition of reduced words is always reduced.

We’ve now constructed our putative group on A: the set of reduced
words on A, equipped with concatenation, or (W, ∗). (We’re yet to
prove that it’s a group: we’ll get to that shortly.) Next, we construct
our function from A to W. Define f : A → W such that f (a) = a for
all a ∈ A. Thus f simply maps each letter in A to its corresponding
one-letter word in W.

Now for the second phase of the proof: showing that (W, ∗) and f
form a free group on A. One might naturally begin by showing that
(W, ∗) is a group. And indeed this seems within reach. First, we’ve
seen that juxtaposition is a binary operation on W. Second, since
w ∗ 1 = w = 1 ∗ w for all w ∈ W, the empty word serves an identity
element. And third (by contrast with concatenation), each w ∈ W has
an inverse in W under juxtaposition, namely its rival w−1: it’s easy to
show that for each w ∈ W we have w ∗ w−1 = 1 = w−1

∗ w. (We can
henceforth dispense with talk of rivals and safely speak of w−1 as the
inverse of w in W.)

Unfortunately (again by contrast with concatenation), proving the
associativity of juxtaposition is tedious. There are various cases to
consider, since cancellation of central inverses can proceed differently
depending upon how words are grouped. Rather than enumerating
the various cases and laboriously producing a separate proof of asso-
ciativity for each, we will prove that (W, ∗) and f form a free group on
A using the so-called van der Waerden trick.

The basic idea is to consider the members of W, not as reduced
words, but as permutations of reduced words. To facilitate this, we
construct a kind of “scale model” of A, using permutations instead of
alphabet letters. We use this scale model of A to construct a scale model
of (W, ∗), using compositions of permutations instead of words. And
then we construct a scale model of f that relates the respective scale
models of A and W in the same way that f relates A and W. Finally,
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we prove that the scale models of (W, ∗) and f form a free group on the
scale model of A; and we infer from this that our “original” (W, ∗) and
f form a free group on our original A.

We begin with the general case and then illustrate with a simple
example. To each letter a ∈ A and each ε = ±1 there corresponds a
single-letter prefixing function [aε] : W → W, defined by [aε](w) = aε ∗ w
for all w ∈ W. The function [aε] takes any reduced word w ∈ W and
juxtaposes it with aε. (Since juxtaposition is a binary operation on
W, the word [aε](w) is guaranteed to be reduced, and so [a] is a well-
defined function from W to itself.) We then prove that [aε] ◦ [a−ε] =
1W = [a−ε] ◦ [aε] for each a ∈ A; and so it follows that each [aε] is a
permutation on W with inverse [a−ε]. (Thus [aε] and [a−ε] “undo” each
other, and we have [aε]−1 = [a−ε].) We define [A] as the set of all single-
letter prefixing functions [a] where a ∈ A. (This is our “scale model”
of A.) Now, we know that the set of all permutations on W is a group
under composition of functions; and we define [W] as the subgroup
of this group generated by [A].19 (This set [W] under composition of
functions is our “scale model” of W under juxtaposition.) Thus [W]
is the set of permutations of W of the form [aε1

1 ] ◦ · · · ◦ [aεn
n ] where

ai ∈ A and εi = ±1. The members of [W] are the permutations of
reduced words obtainable by successive prefixing of alphabet letters
and/or inverses of alphabet letters. We can think of these as prefixing
functions more generally (including both single-letter and multi-letter
prefixing functions).

Example: Where A = {a, b}, our single-letter prefixing functions are
[a], [b], [a−1] and [b−1]. (Note that [a] and [a−1] are inverse functions, as
are [b] and [b−1].) Each of these can be applied to any reduced word:
for example we have [a](bba) = abba and [b−1](bba) = ba. We thus
have [A] = {[a], [b]}. And so [W] contains all the prefixing functions
generated by [A], that is, all possible compositions of [a], [b], [a−1] and
[b−1] (with repetitions allowed). For example we have [a] ◦ [a] ◦ [b−1] ∈
[A], which amounts to successive juxtaposition with b−1, a and a, so
that we have for instance ([a] ◦ [a] ◦ [b−1])(ba−1b) = ab.

Note that in [W] we do not have unique factorisation into single-
letter prefixings: different products of single-letter prefixings can yield
the same overall function. (Example: [a] ◦ [a−1] ◦ [b] = [b] ◦ [b−1] ◦ [b].)
However, if we require that the product resulting from factorisation
correspond to a reduced word, we do get uniqueness: for each σ ∈ [W]
there is a unique reduced word aε1

1 . . . a
εn
n such that σ = [aε1

1 ] ◦ · · · ◦ [aεn
n ].

We call this factorisation the reduced form of σ. (Example: [b] is the
reduced form of [a]◦ [a−1]◦ [b].) The uniqueness of reduced forms will
be important later.

We then define [ f ] : [A] → [W] such that [ f ]([a]) = [a] for all
[a] ∈ [A]. (This is our “scale model” of f .) Thus [ f ] simply maps
each single-letter prefixing function [a] ∈ A to itself, considered as a
prefixing function in [W].

19A set of generators {g1, ..., gn} is a set of group elements such that possibly repeated
application of the generators on themselves and each other is capable of producing all the
elements in the group. The set of generators is said to generate the relevant group.
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Next we show that [W] and [ f ] form a free group on [A]. (From
this result regarding the “scale models” we’ll easily infer that W and
f form a free group on A.) We see immediately that [W] is a group
under composition of functions: it’s a subgroup of the group of all
permutations on W. (In particular, associativity is obvious, and we
circumvent the tedious proof mentioned above.)

It remains to prove that for every group (G, ·) and every function
g : [A]→ G, there is a unique homomorphism φ : [W]→ G such that
g = φ◦ [ f ]. We proceed as follows. Let (G, ·) be a group and g : A→ G
be a function. Define φ : [W]→ G such that for each σ ∈ [W] we have:

φ(σ) = g([a1])ε1 · g([a2])ε2 · . . . · g([an])εn

where [aε1
1 ] ◦ [aε2

2 ] ◦ · · · ◦ [aεn
n ] is the reduced form of σ. To apply φ

to σ ∈ [W], we first factorise σ into reduced form, then apply g to
each factor individually, finally multiplying the results together in G.
(The uniqueness of the reduced form ensures that φ is a well-defined
function on [W].) It follows easily enough that g = φ ◦ [ f ], since if
[a] ∈ [A], then by the definition of [ f ] we have [ f ]([a]) = [a], and
so (φ ◦ [ f ])([a]) = φ([a]) = g([a]), by the definition of φ. Showing
that φ is a homomorphism is more involved. For σ1, σ2 ∈ [W], with
corresponding reduced words w1,w2 ∈ W, there are two cases: either
the concatenated word w1w2 is reduced, or it isn’t. If it is, then it
follows quickly that φ(σ1 ◦ σ2) = φ(σ1) · φ(σ2). If not, then we use
the Sandwich Lemma to write w1w2 = w1

′uu−1w2
′ where w1

′w2
′ is

reduced. We can therefore apply the same reasoning as in the reduced
case to show that φ(σ1 ◦σ2) = φ(σ1) ·φ(σ2). We then prove uniqueness:
since any homomorphism ψ such that (ψ ◦ [ f ])([a]) must agree with φ
on the generating set [A], it must also agree with φ on the whole of
[W]. We therefore show that [W] and [ f ] form a free group on [A].

Finally, exploiting the structural similarity between our “scale
models” and our “originals”, we infer that W and f form a free group
on A. Because each prefixing function has a unique reduced product,
there’s a bijective correspondence between prefixing functions and re-
duced words; and so the relationship between A, W and f and mirrors
that between [A], [W] and [ f ]. We thus see that W and f form a free
group on A, as required. �

5 Free Group Theorem: The “Abstract” Proof

Here we provide a different, more abstract, proof of the existence of
free groups.20 Recall the definition of a Free Group: Let X be a set.
Group F is free on X if there is a map f : X → F and for any group K
and map k : X→ K there is a unique group homomorphism Φ : F→ K
such that k = Φ ◦ f , that is, so that the following diagram commutes.

20This proof is due to Michael Barr [8].
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X

F K

f k

Φ

To prove the existence of free group F we will define two other
groups on X, GB and Gα, with respective maps gB and gα. For now,
think of GB as (roughly) the group composed of all groups on X (B
for ’Big’), and think of Gα as one GB’s components. With some minor
qualifications we will show that F can be defined in terms of GB so that
there is a homomorphism (hom) from F to GB, another homomorphism
from GB to Gα and then another homomophism from Gα to K (for
any group K on X). These homomorphisms compose a composite
homomorphism from F to K (for any group K on X). This will establish
the existence of the homomorphism we are looking for. Effectively,
then, we aim to show that the more complex diagram commutes:

X

F

GB Gα

K

f

gB

j

gα

k

πα

Ψ

Here j is an inclusion map from F to GB, πα is a projection map
from GB to Gα, and Ψ is an isomorphism from Gα to K. The proof
aims to show that given the definitions of GB and Gα, these 3 maps
are homomorphisms. And given that homomorphisms compose, it
follows that there is a homomorphism from F to K. We therefore set
out to prove that Φ = Ψ ◦ πα ◦ j such that k = Φ ◦ f .

It is easily proved that homomorphisms compose:

Composition Theorem: Let β : G1 → G2 and α : G2 → G3 be group
homomorphisms. Then the composite map α ◦ β : G1 → G3 is a
homomorphism.
Proof: We show that α ◦ β(a · b) = α ◦ β(a) · α ◦ β(b) for any a, b,∈ G1
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(where · is the respective group operation):

α ◦ β(a · b) = α(β(a · b)) [def. of α ◦ β]
= α(β(a) · β(b)) [β is a hom.]
= α(β(a)) · αβ(b)) [α is a hom.]
= α ◦ β(a) · α ◦ β(b) [def. of α ◦ β]

Note that the composite diagram breaks down into 3 triangles
where the base of each triangle is one of our three component homo-
morphisms. This enables us to simplify the discussion by establish-
ing that each triangle commutes, before putting the three triangles
together to prove that the composite diagram commutes. Let us there-
fore begin with the first triangle whose base is the inclusion map.

We define F as the subgroup of GB that is generated by gB. But
before we define GB and gB we prove a general theorem that relates
any group G to a subgroup H by the inclusion map.

Inclusion Lemma (INC): Let G be a group with map g : X → G. Then
there is a subgroup H of G and map h : X → H such that h generates
H and g = j ◦ h where j is the inclusion map.

Definition of generates:
h : X→ H generates H ≡ the image h(X) generates H.
Set A generates group H ≡ no proper subgroup of H contains A.

Proof of INC: Let H be the intersection of all subgroups of G that
contain g(X). No proper subgroup of H contains g(X) so g(X) generates
H.

Given INC we say: H is the subgroup of G generated by g : X→ G.
We define F as the subgroup of GB that is generated by gB. So the first
triangle commutes.

X

F

GB

f

gB

j

The inclusion map j : F→ GB is a homomorphism since j(x) · j(y) =
x · y defines inclusion maps.

We now move to the middle triangle. We need no theorem to
introduce the projection map. Its existence falls out of our definitions
of GB and Gα. Consider a collection of groups on X that are each
generated by their corresponding maps. We then have a collection of
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pairs (Gα, gα) where each map gα : X→ Gα generates its corresponding
Gα. We now define GB as the Cartesian product of such groups.

X

GB Gα

gB gα

πα

Definiton: GB =
∏

Gα

Example: Let G1 = {a1, b1} and G2 = {a2, b2}, then
G1×G2 = {(a1, a2), (a1, b2), (b1, a2), (b1, b2)}GB is a group whose operation
entails: (a1, a2) · (b1, b2) = (a1b1, a2b2), where aibi is the product in Gi.

Definition: gB =
∏

gα
Example: Let g1 : X → G1 and g2 : X → G2 be maps, then g1 × g2 :
X → (G1 × G2), such that: (g1 × g2)(x) = (g1(x), g2(x)). So gB : X → GB
is a map.

Now we define our projection map. Let Πα : GB → Gα be a projec-
tion map. Example: Π1 : GB → G1 (obviously a homomorphism). So
it is clear that: gα = Πα ◦ gB and the middle triangle commutes.

We now consider the third triangle. Recall: given set X there is a
collection of pairs (Gα, gα) where each Gα is a group and gα : X → Gα

generates Gα.

X

Gα

Kgα

k

Ψ

Isomorphism Lemma (ISO): if K is any group and k : X → K generates
K, then for some α there is an isomorphism Ψ on Gα onto K such that
k = Ψ ◦ gα.
Intuitive Proof of ISO: Simply take all pairs (Gα, gα) where Gα is a group
and gα generates Gα. Then K is included by definition. That’s the
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intuitive idea but the problem is that ”all” leads to ”the usual logical
paradoxes”. So we turn to a more rigourous poof but first we need
some lemmas.

Sub-lemmas for Rigorous Proof of ISO:
Sub-lemma SL1: Let k : X → K generate K. Then |K| 6 max(|X|,ℵ0).

(proved on p. 366–7 of [8])
Sub-lemma SL2: Y is a set. Then the collection of groups G generated

by Y has cardinality less than or equal to |Y||Y|
2
. (Just consider the

possible ways of filling out the relevant multiplication table.)

Rigorous proof of ISO: For each cardinal s with s 6 max(|X|,ℵ0) choose
a set Ys with |Ys| = s. Consider the set of all groups G with underlying
set Ys; by SL2 Ys exists. Consider all pairs (Gα, gα) where gα : X→ Gα

generates Gα. ISO follows from this construction and SL1.
We now have our three commuting triangles. We put them together

to see that the large diagram commutes. But we must consider two
separate cases, the second of which requires a special qualification.

Recall the definition of F: Subgroup of GB generated by gB. By INC:
gB = j ◦ f .

Case 1 (already depicted in the previous large diagram): Assume k :
X→ K generates K. By ISO there is an α and an isomorphism Ψ such
that k = Ψ◦gα (third triangle). Note: gα = πα◦ j◦ f (combining first and
second triangles). Then by substitution: k = Ψ ◦ πα ◦ j ◦ f (combining
all three). But the composite ψ◦πα ◦ j is a homomorphism in virtue of
its components being homomorphisms. So let Φ = Ψ ◦ πα ◦ j. Case 1
is thus closed.

Case 2 (depicted below): Assume k : X → K does not generate K. By
INC there is a subgroup K′ of K such that k′ : X→ K′ generates K′ and
k = j′ ◦ k′, where j′ : K′ → K is an inclusion map. We know there is a
homomorphism Φ′ : F → K′, such that k′ = Φ′ ◦ f (see case 1). So let
Φ = j′ ◦ Φ′ since j′ : K′ → K is a homomorphism. Then Φ : F→ K is a
homomorphism and k = Φ ◦ f . Case 2 is also closed.

X

F

GB Gα

K′

K

f

gB

j

gα

k′

πα

Ψ

k

j′
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Uniqueness of Φ
Let: Φ1 : F → K and Φ2 : F → K be homomorphisms, where Φ1 ◦ f =
Φ2 ◦ f = k. Let F0 be the set of x in F such that Φ1(x) = Φ2(x). But
then F0 is a subgroup of F. Now we prove that f (X) ⊆ F0 For all
x ∈ X : Φ1 ◦ f (x) = Φ2 ◦ f (x) (by def. of Φi). Φ1( f (x)) = Φ2( f (x)) )(by
def. of ◦). But f (X) generates F (because F is free). So F0 = F, hence
Φ1 = Φ2. The proof of the theorem is complete. �

6 The Explanatory Value of the Proofs

6.1 The Constructive Proof and Local Dependence-based
Explanatory Value

The constructive proof explains the existence of free groups by build-
ing them and showing how the intrinsic structure of what’s built guar-
antees the universal property. For example, the proof builds “words”
and “letters” from members of an arbitrary set, before defining a suit-
able group operation. The proof then shows how the universal prop-
erty depends on features of this construction. This structural feature
of the proof appears to fit the dependence-based model of explana-
tion in the philosophy of science. In that case, assuming that a proof
has explanatory value if it fits this model of explanation, then the
constructive proof has a distinctive kind of explanatory value.

The dependence-based model of explanation really breaks into two
distinct but analogous models. On the one hand there are dynamic
causal theories on which (roughly) a phenomenon is explained by de-
scribing the cause that the phenomenon causally depends on.21 On the
other hand there are synchronic reductive theories on which (roughly)
a phenomenon is explained by describing the underlying structure or
process that the phenomenon reduces to, or metaphysically depends
on [15]. The reductive theories are somewhat closer to what we are
after. Such theories try to model what is happening, for example, in
the reduction of the laws of thermodynamics to statistical mechanics,
and in the reduction of rigid body mechanics to particle mechanics.

In the former case, hypothetical statistical mechanical systems are
constructed, and we are shown how the principles of thermodynamics
fall out of these constructions plus the statistical mechanical laws. To
explain the Boyle-Charles Law, for example, one constructs an ideal-
ized gas and describes it in terms of Newton’s laws. One then shows
(by deduction) that the mean kinetic energy of the gas particles gives
rise to the Boyle-Charles Law, since it can be deduced by identifying
temperature with mean kinetic energy [15, § 2]. In the latter case, one
constructs a hypothetical idealized microphysical system, and shows
how the principles of rigid-body mechanics fall out of these construc-
tions plus the microphysical laws. To explain the principle of mass
additivity, for example, one constructs an idealized microphysical sys-
tem and describes it in terms of Newton’s laws. One then shows (by

21For example, see [26].
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deduction) that the mass of its composite is the sum of the masses of
its elementary components [31].

The constructive proof of free groups does something very similar,
and so should therefore be similarly described by reductive models
of explanation. For in this proof, a group is constructed out of a
set, and we are shown how the universal property definitive of free
groups falls out of this construction plus principles of group theory.22

We believe that this is at least similar to Steiner’s [36] idea that (i) to
explain the behaviour of an entity, one deduces the behaviour from the
essence or nature of the entity and (ii) mathematical proofs exhibit this
deductive structure.23 Thus, already existing models of explanation
give us good reason to think the constructive proof is explanatory,
since the constructive proof satisfies the key requirements of such
models.24

The abstract proof does not do this. Although we have a con-
struction given in terms of the Cartesian product of all groups on
a set, we are given no information about the intrinsic structure of
these component groups. Instead the abstract proof works with ab-
stract relationships among groups to show how those relationships
guarantee that (the subgroup of) this Cartesian product satisfies the
universal property. But we are left wondering what it is about the
intrinsic structure that guarantees this.25 And so if a proof can only
have explanatory value if it is modelled by a dependence account,
then the abstract proof may be seen to be unexplanatory. But this is
too quick. There are explanatory virtues in the abstract proof, but they
are apparently of a different kind.

6.2 The abstract proof and global unification-based ex-
planatory value

Consider a different kind of explanatory virtue based on the unifi-
cationist account of explanation found in the philosophy of science
[16, 22]. On the unification approach in the philosophy of science, an

22Perhaps talk of “falls out” sounds a bit loose and does not get at the core distinction
between a proof and an explanatory proof. But here we don’t mean simply that the universal
property logically follows from the construction in question, rather, we mean that the
universal property naturally arises from the core properties of the construction in question.

23This is also similar to Colyvan’s [12, chap. 5] suggestion that relevance (in the tech-
nical sense) might be a way of spelling out this local/intrinsic notion of explanation in
mathematics.

24Here we’re arguing by analogy. We’re appealing to accepted similarities between two
things (a reductive explanation and a constructive proof) to support the conclusion that some
further similarity between them exists (namely, explanatory value). Of course Steiner’s
account of mathematical explanation has its critics (e.g. see [29, 30]) but to be clear, we are
not suggesting that Steiner’s account is correct or problem free. We are merely noting that
there is an explanatory virtue found in the constructive proof that might be fruitfully spelled
out along similar lines to at least some parts of Steiner’s account.

25This line of thought was expressed by some mathematicians and physicists in our
informal discussions on the Physics Forum.
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event is explained by deriving the occurrence of the event using a the-
ory that unifies many diverse phenomena, and thereby showing that
the event is part of a very general, perhaps utterly pervasive, pattern
of events in the universe. In the best-developed unification account of
explanation, due to Philip Kitcher, an event is explained by deducing
it using the theory that unifies the phenomena better than any other.26

One can straightforwardly adapt this philosophy of science ac-
count to the philosophy of mathematics by replacing “event” and
“occurrence of event” with “theorem”, meanwhile “theory” can be
replaced by “proof”. For example, on the unificationist approach in
the philosophy of mathematics, a theorem is explained by deriving
the theorem using a proof that unifies many diverse theorems, and
thereby showing that the theorem is part of a very general, perhaps
utterly pervasive, pattern of theorems in mathematics. With this in
mind, consider what Michael Barr says about the abstract proof:

The proof is modelled after that of the general adjoint func-
tor theorem of category theory and, as such, is readily
adapted to solving any universal mapping problem in the
category of groups, such as the existence of free products.
It also works in any category consisting of all the algebras
and algebra homomorphisms of any algebraic theory. [...]
Thus included are all such categories as sets, sets with a
base point (and base-point preserving functions), groups,
abelian groups, rings, commutative rings, Lie rings, Jordan
rings, algebras of these types, etc., each considered as a cat-
egory with the evident definition of homomorphism. [8,
p. 364]

We can therefore say that the free group theorem is explained by
the abstract proof because the abstract proof unifies many diverse
free object existence theorems, and thereby shows that the free group
theorem is part of a very general, persuasive, pattern of theorems in
mathematics (free object theorems).

We need not think of the unification theory as being the theory
of explanation, just as we need not think of the dependence theory
as being the theory of explanation. We only need to think of them
as providing a means of spelling out a source of explanatory value.
These sources need be neither necessary nor sufficient conditions for
possessing explanatory power. If that’s right, then since the abstract
proof fits so nicely into the philosophy of mathematics version of the
unification account, then arguably the abstract proof has distinctive
explanatory value.27

Perhaps the abstract proof also has some claim to exhibiting the

26This particular formulation is due to Strevens [38].
27In particular, given that we are not committed to the unification account being the

account of explanation, some of the noted shortcomings of unificationism need not concern
us. Indeed, the problem cases for Kitcher’s account do not undermine it completely but,
rather, serve to highlight its limitations as the complete account of explanation. (See [39] for
discussion on this issue.)
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reduction-style virtues. This may well be but if so, such virtues are
not prominent. The abstract proof does not build a specific group
and prove that there must be a free group from those specifics. That’s
why it’s not meant to be analogous to reductive explanations, which
(e.g. in the rigid-body mechanics case) build a specific microphysical
system and deduce a given property (mass additivity, say) from those
specifics. Rather, the relevant property (freeness) is derived from cer-
tain very general properties of groups and this becomes explanatory
insofar as the proof can enable one to see how it can be generalised
to other domains, thereby unifying them. But it’s plausible that these
things come in degrees. Perhaps the abstract proof is somewhat re-
ductive, even if that’s not the feature of it that yields most of its
explanatory value, and perhaps the constructive proof is somewhat
unificatory even if that’s not the feature of it that yields most of its
explanatory value.

6.3 Which proof is more explanatory?

If the above is a correct characterisation of the situation, then the two
proofs are hard to compare because their primary sources of explana-
tory value differ. For example, if both proofs were modelled only
by the unificationist model, we could ask which proof has the more
general scope, or which proves a range of theorems using the most
minimal basic assumptions (or both). Determining which is more ex-
planatory wouldn’t exactly be straightforward but we would at least
have a clear way forward. But it is not clear how to compare the
relative explanatory strengths of proofs whose primary explanatory
value come from such distinct sources.

What do mathematicians think? Some comments from Saunders
Mac Lane on this issue are interesting. Mac Lane notes that one of the
applications of the category theory Representability Theorem is that
it facilitates a neat (category theory) proof of the Free Group Theorem
“without entering into the usual (rather fussy) explicit construction of
the elements of [the free group on X] as equivalence classes of words
in letters of X” [28, p. 123]. It’s not clear from Mac Lane’s comments
whether this claimed advantage for the abstract approach to proving
the Free Group Theorem is supposed to be an explanatory advantage.
At first blush the advantage looks pragmatic: the abstract proof avoids
some tedious constructions and saves some ink. But the claimed ad-
vantage can also be thought of as an explanatory advantage: whereas
the constructive proof bogs down in detail, the category theory proof
rises above such details to reveal the real reasons for the existence
of free groups. According to this line of thought, the real reason for
the existence of free groups is found at the more abstract structural
level. The existence of free groups is just a special case of a more
general result, so focussing on the details in group theory is to miss
the point, or so the suggestion goes.28 A related suggestion is that

28This line of thought was also expressed by some of the mathematicians and physicists
on the Physics Forum discussion.
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a proof of free groups is explanatory to the extent that it helps jus-
tify/secure/illuminate the applications of free groups in group theory.
If this is on the right track, it may provide a neutral way of comparing
the explanatory power of proofs whose respective explanatory val-
ues come from different sources (e.g. local dependence versus global
unification).

So we can ask, to what extent is the subgroup of GB generated by
gB that which one has in mind when engaged in applications? Anal-
ogously: to what extent is the free group with group operation juxta-
position that which one has in mind when engaged in applications?
Does it ever make a difference? These are not questions we can answer
here but these are the kinds of questions that need to be addressed in
advancing our understanding of mathematical explanation.29

Our conclusion may seem a little unsatisfying: there is good rea-
son to suspect that there are two competing candidates for explanatory
power in mathematics—two flavours of mathematical explanation, if
you like—and it is difficult to make trade offs between the two. But as
we said at the outset, mathematical explanation is puzzling—puzzling
enough that we should be suspicious of any account that promises
easy answers. In any case, we make no apologies for not offering
easy answers. Instead, we offer a case study that we believe is helpful
in shedding light on the nature(s) of mathematical explanation. We
have argued that a given theorem admits two intuitively explanatory
proofs, one which is structurally similar to reductive explanation, an-
other which is structurally similar to unificationist explanations. We
speculate that the explanatoriness derives from these structures.

Although it is common to talk of a proof being explanatory or
not, and we too mostly follow this way of talking, it seems to us
that it is more plausible that explanatory virtues come in degrees.
Those proofs that exhibit an explanatory virtue to a high degree are
those that we speak of as being explanatory. (Just as belief comes
in degrees and if the degree is high enough we tend to treat that as
full belief.) But accepting that explanatory virtue comes in degrees
and that there is more than one kind of explanatory virtue does not
trivialise the view. It does not, for example, mean that all proofs
are explanatory because they are all explanatory to some degree in
some explanatory virtue or other. The proofs in question need to
exhibit the explanatory virtue(s) to a suitably high degree. What is a

29In this spirit, here are a couple of specific applications to think about:
(i) Often one proves a result about groups by first establishing the result for free groups
and then showing how it holds for the quotient of these groups. When these groups are
abelianized (mod out by commutators) this has important consequences for computing
things like Ext and Tor.
(ii) Every group is a quotient of two free groups. (Let G be any group and Let FG be the free
group generated by the elements of G. The universal property of this free group provides
a homomorphism FG → G and let K denote its kernel. By the first isomorphism theorem it
follows that FG/K = G and since subgroups of free groups are free, this establishes that every
group is a quotient of two free groups.) This entails that every group has a presentation. (The
generators are given by the generators of FG and the relations are given by the generators
of K.)
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high enough degree? This is probably context sensitive and perhaps
also vague, but there will be clear cases on either side. There will
also be some difficult comparisons—even among the clear cases of
explanatory proofs. Indeed, the two proofs in this paper illustrate
such difficulties: one proof is high in the unificatory stakes and low
in the reductionist stakes (the abstract proof), the other is high in the
reductionist stakes and low in the unificatory stakes (the constructive
proof). But according to our account, both proofs are explanatory,
albeit explanatory for different reasons. Each is explanatory because
it exhibits one of the explanatory virtues to a high degree but it is not
clear how to compare these two kinds of explanatory virtues so there
is no straightforward way to say which proof is the more explanatory.
Indeed, there may be no fact of the matter about such comparisons.

As we have already noted, further philosophical work needs to be
done on understanding the broader roles of free groups in mathematics
to see which of the proofs of the theorems in question best support
these roles. We also need to look at proofs of theorems from a variety
of areas of mathematics to see if the same issues arise.30 Finally, we
need greater collaboration between mathematicians and philosophers
on this project. This is not something philosophers can do alone. Most
philosophers’ intuitions about explanatory power in mathematics run
out fairly quickly and, in any case, are unlikely to be reliable. Our case
study of the Free Group Theorem is just a small step towards a better
understanding of the intricacies of the explanatory virtues of different
proofs.31
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