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RELATIVE EXPECTATION THEORY*

he St. Petersburg game and its nearby neighbors present

serious problems for decision theory.! The St. Petersburg game

invokes an unbounded utility function to produce an infi-
nite expectation for playing the game. The problem is usually presented
as a clash between decision theory and intuition: most people are not
prepared to pay a large finite sum to buy into this game, yet this is
precisely what decision theory suggests we ought to do. But there is
another problem associated with the St. Petersburg game. This second
problem is that standard decision theory counsels us to be indifferent
between any two acts that have infinite expected utility. So, for example,
consider the decision problem of whether to play the St. Petersburg
game or a game where every payoff is $1 higher. Let us call this second
game the Petrograd game (it is the same as St. Petersburg but with a bit of
twentieth-century inflation). Standard decision theory tells us to be
indifferent between these two options.

It might be argued that any intuition that the Petrograd game is
better than the St. Petersburg game is a result of misguided and naive
intuitions about infinity.” But this argument against the intuition in
question is misguided. The Petrograd game is clearly better than the
St. Petersburg game. And what is more, there is no confusion about
infinity involved in thinking this. When the series of coin tosses comes
to an end (and it comes to an end with probability 1), no matter how
many tails precede the first head, the payoff for the Petrograd game
is one dollar higher than the St. Petersburg game. Whatever the

*Thanks to Alan Hajek, Adam La Caze, Aidan Lyon, Tony Martin, Martin Rechenauer,
Katie Steele, and Juliana Weingaertner. I am also grateful to audiences at the 2005
Stradbroke Island Philosophy and Linguistics Cogitamus, the 2005 Australasian Asso-
ciation of Philosophy (New Zealand) conference at the University of Otago in Dunedin,
the Philosophy Department at the University of California, L.os Angeles, and the Phi-
losophy Department at the Ludwig-Maximilians University in Munich.

'Recall that the St. Petersburg game is a game where a fair coin is tossed repeatedly,
if necessary, until the first head appears. The game is then over. The payoff for this
game is $2 if the head appears on the first toss, $4 for heads on the second toss, $8
on the third, and so on. See Robert Martin, “The St. Petersburg Paradox,” in Edward
Zalta, ed., The Stanford Encyclopedia of Philosophy (Fall 2001 Edition), URL = <http://
plato.stanford.edu/archives/fall2001/entries/paradox-stpetersburg/>.

*These are the same intuitions that incorrectly suggest that 1 + o > o, or so the
story goes.
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outcome, you are better off playing the Petrograd game. Infinity has
nothing to do with it. Indeed, a straightforward application of dom-
inance reasoning backs up this line of reasoning.’ Standard decision
theory (in the form of expected utility maximization) cannot deliver
this verdict, but so much the worse for standard decision theory.
Dominance reasoning gets it right, and this is significant.

I have argued elsewhere! that there are a number of cases like this,
where dominance reasoning delivers the correct result and expected
utility maximization is either silent or indifferent. In light of such
cases, it would seem that we have a kind of unsettling pluralism about
decision rules on our hands: expected utility maximization and
dominance reasoning are both required—neither will do on its own.
So here is the first challenge: provide a generalization of decision
theory that will unify the rule of expected utility maximization and
the rule of dominance.

Next consider a variation on the Petrograd game. Like the Pet-
rograd, this game has payoffs $1 higher than the corresponding
payoffs of the St. Petersburg game—except for one. The exception
is a payoff for some very low probability state and this is $1 less
than the corresponding St. Petersburg payoff. Call this game the
Leningrad game. Here expected utility theory suggests that we ought to
be indifferent between the Leningrad game and the St. Petersburg
game; dominance reasoning is not applicable and so is silent. But
there is a very strong intuition that the Leningrad game is better
than the St. Petersburg game. After all, the Leningrad game almost
dominates the St. Petersburg game, and the probability of finding
oneselfin the nondominant state is, by construction, very low. So here
is the second challenge: either find a decision rule that supports this
intuition or explain away the intuition. But note how hard the latter
will be. Any argument that explains away the intuition must not
also explain away the intuition that the Petrograd game is better
than the St. Petersburg game, for the latter intuition is certainly
correct. So the real challenge here is to provide a decision-theoretic
validation of the intuition that the Leningrad game is preferable to
the St. Petersburg game.

In this paper I will present new rules of decision that meet both
these challenges. That is, I will provide a generalization of decision

*Recall that dominance reasoning suggests that one ought to choose act A, over act
Ay if in every state the utilities associated with A; are never less than the corresponding
utilities for A, and in at least one state the utility of A, is higher than the corresponding
utility for Ao. This rule is only applicable when the states are independent of the acts.

4C01yvan, “No Expectations,” Mind, cxv (2006): 695-702.
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theory that unifies expected utility theory and dominance reasoning.
Indeed, the theory I advance is a generalization in the sense that it
is a conservative extension of both dominance reasoning and finite
expected utility theory. Moreover, I will show how the new theory is
also able to deal with problem cases such as choosing between the
Leningrad game and the St. Petersburg game.

I. INTRODUCING RELATIVE EXPECTED UTILITY

Assume throughout that we have a decision problem where the states
are independent of the acts. We define the relative expected utility of
act A, over A; as

REU (A3,4;) = Zl)i(uki — uy)

i=1

where p; is the probability associated with state S; and wj; are the
utilities of the outcome resulting from act A; in state S;. For infinite
state spaces we define relative expected utility similarly:

REU (A, A) =Y piws — )

i=1

where the right-hand side converges or diverges to infinity. The
decision rule is then as follows:

REU Decision Rules: Choose act A, over act A; iff REU(A;,A;) > 0. If
REU(A;,A) = 0 an agent should be indifferent between the two acts
in question.

The resulting theory I call relative expectation theory. The basic idea
here is clear. Relative expected utility is the expected gain or loss
in utility between the two acts in question. In other words, it is the
expected relative advantage in choosing one act over another.’ It is
also worth noting that there is a sense in which the expected utility
can be thought of as a special case of relative expected utility: the
expected utility of an act is the relative expected utility of that act
over an act with zero payoffs for every state (the null act).® On the

*The basic idea of considering the expectations of differences was advanced
independently in Alan Hajek, “In Memory of Richard Jeffrey: Some Reminiscences
and Some Reflections on The Logic of Decision,” Philosophy of Science, LxxX111 (2006):
947-58.

®We need to be careful though. For the standard axioms for utility theory, the
von Neumann-Morgenstern axioms, do not allow us to make sense of a distinguished
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other hand, it might be argued that relative expectation theory is
nothing new; economists may well have had something like this in
mind when considering expected profits and losses, for example.
After all, since utilities are random variables, their differences are also
random variables, and relative expectation theory just considers the
expectation of these.” While there is a sense in which this is right, it
turns out that the advice relative expectation theory gives in the
problem cases I opened with is quite different from that given by
standard decision theory. Standard decision theory counsels us to
calculate the expected utility of each act and choose the act that has
the greatest expected utility (if there is such an act). Relative
expectation theory gives no such advice. In fact, relative expectation
theory does not even require the calculation of expectations for
individual acts. In the next section I will have more to say about the
relationship between standard decision theory and relative expecta-
tion theory. As we shall see, the two theories are closely related but the
advice they give is quite different. I will thus continue to speak of
relative expectation theory as a distinct theory of decision. So much
for what relative expectation theory is, let me now say a little about
what it is good for.

It is straightforward to show that the above decision rules support
the intuition to choose the Petrograd game over the St. Petersburg
game (since the relative expected utility of the Petrograd game over
the St. Petersburg game is 22 ,1/2°=1). It is also straightforward to
show that so long as the nondominant utility in the Leningrad game is
associated with a state with probability less than a half, we should
choose the Leningrad game over the St. Petersburg game. It should
also be intuitively clear that the above decision rules agree with
dominance reasoning, whenever the latter applies, and agree with
expected utility theory in at least cases with finite state spaces. That is,
relative expectation theory is a conservative extension of both the rule
of dominance and finite expected utility theory. (I will back up this
last claim shortly.)

Relative expected utility theory clearly has a lot going for it. Indeed,
it would seem to be a good candidate for the unification of dom-
inance reasoning and expected utility theory which we seek. It re-

zero. See John von Neumann and Oskar Morgenstern, Theory of Games and Economic
Behavior (Princeton: University Press, 1944). Like temperature scales (and unlike
distance scales), the zero of utility theory is purely conventional. Thanks to Juliana
Weingaertner for reminding me of this point.

"Thanks to an anonymous referee for this suggestion.
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mains to demonstrate this though. I do this in the next section by
proving a number of theorems about relative expected utility.

II. SOME ELEMENTARY THEOREMS

First a couple of theorems that shows that our decision rules are well
defined.® That is, I show that the above rules do not give us contra-
dictory advice.

Theorem 1 If REU(A;,A9) > 0, REU(Ag,A;) < 0.

Proof: Without loss of generality, assume that the state space is infi-
nite. REU(A1,A9) =37, pi(u; — ue;) > 0, and since this series is de-
fined it either converges or diverges to positive infinity.” In either case
REU (Ag,A1) =327 pi(ugi — wi) = —REU(A1,4p) < 0.

A similar proof establishes a symmetry result for when the relative
expected utility is zero.

Theorem 2 If REU(A;,A9) = 0, REU(Ag,4;) = 0.

Having established that our new decision rules are well defined, I
now prove a few results that establish the relationship between rela-
tive expectation theory and our earlier decision rules.

Theorem 3 If EU(A;) > EU(Ay), REU(A;,Ay) > 0.

Proof: Again without loss of generality assume that the state space
is infinite. There are four cases to consider: (i) EU(A;) and EU(Ay)
both converge; (ii) EU(A;) diverges to infinity and EU(As) converges;
(iii) EU(A;) converges and EU(Ay) diverges to negative infinity;
and (iv) EU(A;) diverges to positive infinity and EU(Ay) diverges to
negative infinity. Consider case (i) first. Since EU(A;) = 22, piuy; >
E‘filpiuQ,; = EU(A?), E;’ilpi(uli - ug,;) = REU(A],AQ) > 0. In case (ll),
we have EU(A;) = 2%, piw; is infinite and 2%, piug; = EU(Ag) is
finite, so EU(A]) - EU(AQ) = E(f:hfbiul; - Eloilpzu% = E?ilp;(uli_ UQ,‘) =
REU(A;,49) > 0. In case (iii), we have EU(A;) = 2%, pywi; is finite
and EU(Ag) = 222, pjup; is negatively infinite, so EU(A;) — EU(Ay) =
E?ilp,;u]i - E?C_;lp,ju% =Ef°:1pi(u|i - ug,;) = REU(A| ,Ag) > 0. In case (iV),
we have EU(A;) =2%2, pjwy; is positive infinite and =2 piug; = EU(Ag)
is negative infinite, so EU(A;) — EU(Ag) = 2%, piur; —Z%2, pitg; =
230 pi(ur; — ug;) =REU(A1,49) > 0.

And there is a similar proof that establishes the corresponding case
for identity.

For all these theorems I continue to assume that the states are independent of
the acts. I will also make use of some results about well-behaved divergent series.
See G.H. Hardy, Divergent Series (New York: Oxford, 1949) for more on this topic.

’In this and other proofs, I adopt the common convention of treating a series
that diverges to infinity as being well defined and having infinity as its limit.
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Theorem 4 If EU(A;) = EU(As) and is finite, then REU(A,As) =
REU(AQ,Al) = 0.

These two results tell us that relative expectation theory agrees with
expected utility theory in finite cases (and whenever the states are
independent of the acts). It is important to note that theorem 3 holds
only in the direction stated. Indeed, it is the fact that relative ex-
pectation theory is more discriminating than expected utility theory
that allows us to use relative expectation theory to justify choosing the
Petrograd game over the St. Petersburg game. Inequalities in relative
expected utilities do not imply inequalities in expected utilities and
we do not require the expectation series to converge in order to make
meaningful comparisons of actions.

Next a theorem relating relative expected utility to dominance.

Theorem 5 If A} dominates Ag, REU(A;,A9) > 0.

Proof: Again without loss of generality assume that the state space is
infinite. Since A; dominates A, each u,; is greater than or equal to each
u; and at least one wy; is strictly greater than a corresponding wus; But
this implies that REU(A;,A9) = 2%, pi(w1; — ug;) > 0.

This result tells us that relative expectation theory agrees with domi-
nance reasoning.
Next a couple of transitivity results.

Theorem 6 If REU(A;,As) > 0 and REU (As,A3) > 0, then REU(A},As)
> 0.

Proof: Once again, without loss of generality, assume that the state
space is infinite. REU (A1,A9) =222, p;(u1; — ug;) >0 and REU (Ag,A3) =
=2 pi(ug; — ug;) > 0. It follows that REU(A;,As) + REU(Ag,Ag) > 0. But
since the series in question either converge or diverge to positive infin-
ity, REU(A;,A9) + REU (Ag,A3) =272 pi (u1; — ug;) + 232 pi(ug; — us;) =
220 pi(ur; — us;) = REU(A1,43) > 0.

Theorem 7 IfREU(A;,Ag) = 0 and REU (Ag,A3) = 0, then REU(A,43) = 0.

Proof: Once again, without loss of generality, assume that the state
space is infinite. REU (A;,A9) = 2%, p;(w1; — ue;) =0 and REU(Ag,A3) =
2% pi(ug; — ug;) = 0. It follows that REU(A;,A9) + REU(Ag,A3) = 0. But
REU(A1,A2) + REU(Ag,As) = 232 pi(uri — ugy) + 232 pi(ug; — ug;) =
2% pi(ur; — ug;) = REU(Ap,A3) = 0.

Finally, the promised conservativeness result.

Theorem 8 Relative expected utility theory is a conservative extension
of both finite expected utility theory and dominance reasoning.

Proof: This follows from theorems 3, 4, and 5.
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III. DISCUSSION

Theorem 8 is the crucial one. This shows that relative expectation
theory is the generalization we seek. Moreover, relative expectation
theory provides a satisfying account of the near-dominance cases such
as the Leningrad game versus the St. Petersburg game. And it does
this in a unified way. There is no special pleading for problem cases."

There are, however, some limitations to this approach that deserve
commenting on. The first is the assumption that the states are inde-
pendent of the acts. I relied on this assumption in the very definition
of relative expected utility, when I required that the probabilities for
each state do not depend on the acts. Dispensing with this assump-
tion and thus generalizing the notion of relative expected utility
would free things up, but it is not obvious how to do this. In any case,
as things stand the definition of relative expected utility and thus the
proofs of the theorems relied on the independence of states and acts,
so we must live with this assumption for the time being at least."

The second restriction is that the new theory can only deal with
pair-wise comparisons of acts. Indeed, the very definition of relative
expected utility only makes sense of pair-wise comparisons. In light
of theorems 6 and 7, though, this is not such a serious limitation.
For theorems 6 and 7 show us that we can make sense of decision
problems with more than 2 acts—it is just that we need to compare
the acts two-by-two. Theorems 6 and 7 tell us, in effect, that we
can produce an ordering of the acts, and since any such ordering
of finitely many acts will have a (perhaps nonunique) maximal act,
we can solve the decision problem despite the limitation of using
only pair-wise comparisons.'?

' Although T will not pursue the details here, relative expectation theory also deals
with a class of problems where expected utility theory is silent. I have in mind here
the Pasadena game versus the Altadena game. See Harris Nover and Alan Hijek,
“Vexing Expectations,” Mind, cxur (2004): 237-49; Hdjek and Nover, “Perplexing
Expectations,” Mind, cxv (2006): 703-20; and Colyvan, “No Expectations.” That this is
so follows straightforwardly from theorem 5 above.

"' This issue also touches on the treatment of Newcomb’s paradox, see Robert
Nozick, “Newcomb’s Problem and Two Principles of Choice,” in Nicholas Rescher, ed.,
Essays in Honour of Carl G. Hempel (Boston: Reidel, 1969), pp. 114-46. Since Newcomb’s
problem places dominance reasoning and expected utility theory in conflict with one
another, it would suggest that dropping the independence condition will be no easy
matter. For example, if we could prove analogues of theorems 3 and 5 without the
independence assumption, Newcomb’s problem would present itself as a serious
problem for relative expectation theory. Perhaps what is required is a causal version of
relative expectation theory; see James Joyce, The Foundations of Causal Decision Theory
(New York: Cambridge, 1999).

"It is important to note that this is only the case when all the relative expected
utilities are defined. There will be cases when they are not. Not surprisingly, relative
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These limitations suggest that there is further work to be done
here, but still relative expectation theory is genuinely useful in solving
some persistent and troubling problems in infinite decision theory.

MARK COLYVAN
University of Sydney

expectation theory will not be able to solve these problems. (Consider, for example, the
case of play or not to play the Pasadena game. Since the Pasadena game does not have
an expectation, there is no relative expectation for playing the Pasadena game over not
playing it. See Nover and Hajek, “Vexing Expectations,” Hajek and Nover, “Perplexing
Expectations,” and Colyvan, “No Expectations.”)



