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THE MIRACLE OF APPLIED MATHEMATICS

ABSTRACT. Mathematics has a great variety of applications in the physical sciences.
This simple, undeniable fact, however, gives rise to an interesting philosophical problem:
why should physical scientists find that they are unable to even state their theories without
the resources of abstract mathematical theories? Moreover, the formulation of physical
theories in the language of mathematics often leads to new physical predictions which
were quite unexpected on purely physical grounds. It is thought by some that the puzzles
the applications of mathematics present are artefacts of out-dated philosophical theories
about the nature of mathematics. In this paper I argue that this is not so. I outline two
contemporary philosophical accounts of mathematics that pay a great deal of attention to
the applicability of mathematics and show that even these leave a large part of the puzzles
in question unexplained.

1. THE UNREASONABLE EFFECTIVENESS OF MATHEMATICS

The physicist Eugene Wigner once remarked that

[t]he miracle of the appropriateness of the language of mathematics for the formulation of
the laws of physics is a wonderful gift which we neither understand nor deserve. (Wigner
1960, 14)

Steven Weinberg is another physicist who finds the applicability of
mathematics puzzling:

It is very strange that mathematicians are led by their sense of mathematical beauty to de-
velop formal structures that physicists only later find useful, even where the mathematician
had no such goal in mind. [ . . . ] Physicists generally find the ability of mathematicians to
anticipate the mathematics needed in the theories of physics quite uncanny. It is as if Neil
Armstrong in 1969 when he first set foot on the surface of the moon had found in the lunar
dust the footsteps of Jules Verne. (Weinberg 1993, 125)

Mark Steiner also believes that there is a problem here worthy of
attention:

[H]ow does the mathematician – closer to the artist than the explorer – by turning away
from nature, arrive at its most appropriate descriptions? (Steiner 1995, 154)

Indeed, this puzzle,1 which Wigner calls “the unreasonable effective-
ness of mathematics”, is often remarked upon by physicists and applied

Synthese 127: 265–277, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.



266 MARK COLYVAN

mathematicians2 but receives surprisingly little attention in the philo-
sophical literature. It is hard to say why this puzzle has not caught the
imagination of the philosophical community. It is not because it’s unknown
in philosophical circles. On the contrary, it is very well known; it just does
not get discussed. This lack of philosophical attention, I believe, is due (in
part) to the fact that the way the problem is typically articulated seems to
presuppose a formalist philosophy of mathematics.3

Given the decline of formalism as a credible philosophy of mathematics
in the latter half of the twentieth century, and given the rise of anti-realist
philosophies of mathematics that pay great respect to the applicability of
mathematics in the physical sciences (such as Hartry Field’s fictionalism
(Field 1980)), it is worth reconsidering Wigner’s puzzle to see to what
extent, if any, it relies on a particular philosophy of mathematics. The
central task of this paper is to argue that although Wigner set the puzzle
up in language that suggested an anti-realist philosophy of mathematics,
it appears that the puzzle is independent of any particular philosophy of
mathematics. At least, a version of the puzzle can be posed for two of the
most influential, contemporary philosophies of mathematics: one realist,
the other anti-realist.

In the next section I outline the puzzle in more detail and give an ex-
ample of the unreasonably effective role mathematics plays in physical
science. In Section 3 I discuss the suggestion that the puzzle is an artefact
of a particular philosophy of mathematics. In the following two sections,
Sections 4 and 5, I present two influential, contemporary positions in the
philosophy of mathematics that, to my mind, pay the greatest attention to
the applicability of mathematics and show that neither of these provide a
solution to the puzzle.

2. WHAT IS THE PUZZLE?

Mark Steiner is one of the few philosophers to take interest in Wigner’s
puzzle (Steiner 1989, 1995, 1998). Steiner has quite rightly suggested
that Wigner’s “puzzle” is in fact a whole family of puzzles that are not
distinguished by Wigner; it depends on what you mean by ‘applicability’
when talking of the applications of mathematics. Steiner claims that it
is important to distinguish the different senses of ‘applicability’ because
some of the associated puzzles are easily solved while others are not. For
example, Steiner argues that the problem of the (semantic) applicability
of mathematical theorems4 was explained adequately by Frege (Steiner
1995). There is, according to Steiner, however, a problem which Frege
did not address. This is the problem of explaining the appropriateness of
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mathematical concepts for the description of the physical world. Of par-
ticular interest here are cases where the mathematics seems to be playing
a crucial role in making predictions. Moreover, Steiner has argued for his
own version of Wigner’s thesis. According to Steiner, the puzzle is not
simply the extraordinary appropriateness of mathematics for the formula-
tion of physical theories, but concerns the role mathematics plays in the
very discovery of those theories. In particular, this requires an explanation
that is in keeping with the methodology of mathematics – a methodology
that does not seem to be guided at every turn by the needs of physics.

The problem is epistemic: why is mathematics, which is developed
primarily with aesthetic considerations in mind, so crucial in both the
discovery and the statement of our best physical theories? Put this way
the problem may seem like one aspect of a more general problem in the
philosophy of science – the problem of justifying the appeal to aesthetic
considerations such as simplicity, elegance, and so on. This is not the case
though. Scientists and philosophers of science invoke aesthetic considera-
tions to help decide between two theories that are empirically equivalent.
Aesthetics play a much more puzzling role in the Wigner/Steiner problem.
Here aesthetic considerations are largely responsible for the development
of mathematical theories. These, in turn, (as I will illustrate shortly) play
a crucial role in the discovery of our best scientific theories. In particular,
novel empirical phenomena are discovered via mathematical analogy. In
short, aesthetic considerations are not just being invoked to decide between
empirically equivalent theories; they seem to be an integral part of the
process of scientific discovery.

I find Steiner’s statement of the puzzle clearer and more compelling so
when I speak of Wigner’s puzzle I will have Steiner’s version in mind. I
will thus concentrate on cases where the mathematics seems to be play-
ing an active role in the discovery of the correct theory – not just in
providing the framework for the statement of the theory. I’ll illustrate this
puzzle by presenting one rather classic case and refer the interested reader
to Steiner’s article (Steiner 1989) and book (Steiner 1998) for further
examples.5 In the case I’ll consider here, we see how Maxwell’s equations
predicted electromagnetic radiation.

Maxwell found that the accepted laws for electromagnetic phenom-
ena prior to about 1864, namely Gauss’s law for electricity, Gauss’s law
for magnetism, Faraday’s law, and Ampère’s law, jointly contravened the
conservation of electric charge. Maxwell thus modified Ampère’s law to
include a displacement current, which was not an electric current in the
usual sense (a so-called conduction current), but a rate of change (with re-
spect to time) of an electric field. This modification was made on the basis
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of formal mathematical analogy, not on the basis of empirical evidence.6

The analogy was, of course, with Newtonian gravitational theory’s conser-
vation of mass principle. The modified Ampère law states that the curl of
a magnetic field is proportional to the sum of the conduction current and
the displacement current:

∇ × B = 4π

c
J + 1

c

∂

∂t
E.(1)

Here E and B are the electric and magnetic field vectors respectively, J is
the current density, and c is the speed of light in a vacuum.7 When this law
(known as the Maxwell-Ampère law) replaces the original Ampère law in
the above set of equations, they are known as Maxwell’s equations and
they provide a wonderful unity to the subject of electromagnetism.

The interesting part of this story for the purposes of the present dis-
cussion, though, is that Maxwell’s equations were formulated on the
assumption that the charges in question moved with a constant velocity,
and yet such was Maxwell’s faith in the equations, he assumed that they
would hold for any arbitrary system of electric fields, currents, and mag-
netic fields. In particular, he assumed they would hold for charges with
accelerated motion and for systems with zero conduction current. An unex-
pected consequence of Maxwell’s equations followed in this more general
setting: a changing magnetic field would produce a changing electric field
and vice versa. Again from the equations, Maxwell found that the result of
the interactions between these changing fields on one another is a wave of
electric and magnetic fields that can propagate through a vacuum. He thus
predicted the phenomenon of electromagnetic radiation. Furthermore, he
showed that the speed of propagation of this radiation is the speed of light.
This was the first evidence that light was an electromagnetic phenomenon.8

It seems that these predictions (which were confirmed experimentally
by Heinrich Hertz in 1888 – nine years after Maxwell’s death) can be
largely attributed to the mathematics, since the predictions were being
made for circumstances beyond the assumptions of the equations’ formu-
lation. Moreover, the formulation of the crucial equation (the Maxwell-
Ampère law) for these predictions was based on formal mathematical
analogy. Cases such as this do seem puzzling, at least when presented a
certain way. The question on which I wish to focus is whether the puzzle-
ment is an artefact of the presentation (because some particular philosophy
of mathematics is explicitly or implicitly invoked), or whether these cases
are puzzling simpliciter. I will argue that it is the latter.
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3. IS THE PUZZLE DUE TO A PARTICULAR PHILOSOPHY OF

MATHEMATICS?

Applicability has long been the Achilles’ heel of anti-realist accounts of
mathematics. For example, if you believe that mathematics is some kind of
formal game – as Hilbert did – then you need to explain why mathematical
theories are needed to such an extent in our descriptions of the world. After
all, other games, like chess, do not find themselves in such demand. Or if
you think that mathematics is a series of conditionals – ‘2 + 2 = 4’ is
short for ‘If the Peano-Dedekind axioms hold then 2 + 2 = 4’ – the same
challenge stands.

In Wigner’s article he seems to be taking a distinctly anti-realist point
of view:

[M]athematics is the science of skillful operations with concepts and rules invented just for
that purpose. (Wigner 1960, 2)

(My italics.) Others, such as Reuben Hersh, also adopt anti-realist language
when stating the problem:9

There is no way to deny the obvious fact that arithmetic was invented without any special
regard for science, including physics; and that it turned out (unexpectedly) to be needed by
every physicist. (Hersh 1990, 67)

(Again, my italics.) Some, such as Paul Davies (1992, 140–60) and Roger
Penrose (1990, 556–7), have suggested that the unreasonable effective-
ness of mathematics in the physical sciences is evidence for realism about
mathematics. That is, there is only a puzzle here if you think we invent
mathematics and then find that this invention is needed to describe the
physical world. Things aren’t that simple though. There are contemporary
anti-realist philosophies of mathematics that pay a great deal of attention
to applications, and it is not clear that these suffer the same difficulties
that formalism faces. Furthermore, it is not clear that realist philosophies
of mathematics escape the difficulties. In what follows I will argue that
there are puzzles for both realist and anti-realist philosophies of math-
ematics with regard to accounting for the unreasonable effectiveness of
mathematics.

I will consider one influential realist philosophy of mathematics due to
Quine (1980) and Putnam (1979) and one equally influential anti-realist
position due to Hartry Field (1980). Both of these philosophical positions
are motivated by, and pay careful attention to, the role mathematics plays
in physical theories. It is rather telling, then, that each suffers similar
problems accounting for Wigner’s puzzle.
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4. QUINEAN REALISM

Quine (1980) and Putnam (1979) have argued that we are committed to the
existence of all the entities quantified over in our best scientific theories
(once these theories are suitably formalised). That is, if talk of some entity
ξ is indispensable to a theory T , and T is our best scientific theory of some
phenomena, then we are committed to the existence of ξ . According to
Quine and Putnam, quantification over mathematical entities is indispens-
able to our best scientific theories in precisely this way. Their conclusion is
that we are committed to the existence of mathematical entities. Moreover,
according to this line of thought, the existence of mathematical entities
is empirically confirmed by exactly the same evidence that confirms the
theory as a whole. So, for instance, Quine believes in the existence of sets
for exactly the same reasons he believes in the existence of electrons. Cru-
cial to this argument are the doctrines of naturalism – which delivers the
commitment to entities required by our best scientific theories – and holism
– which prohibits interpreting parts of these theories non-realistically.10

Although both these doctrines have been called into question in various
ways,11 the argument remains influential, and Quinean realism is one of the
more important contemporary positions in the philosophy of mathematics.

It is also worth mentioning that a great deal hangs on how we under-
stand ‘indispensable’ in this context. I have argued elsewhere that an entity
is dispensable to a theory T if there exists a second theory T ′ with the fol-
lowing properties: (i) T ′ has exactly the same observational consequences
as T , but in T ′ the entity in question is neither mentioned nor predicted
and (ii) T ′ is preferable to T (Colyvan 1999, 5). Thus, whether an entity is
indispensable or not is really a question of theory choice and so is guided
by the usual canons of theory choice. These may include: simplicity, uni-
ficatory power, boldness, formal elegance and so on. It seems, then, that
an entity can be indispensable even though empirically equivalent theories
exist that do not quantify over the entity in question. The entity might turn
out to be indispensable because, for example, it’s part of a theory that is
more fruitful than its competitors.12

Now, granted all this, it might be thought that the Quinean realist has a
response to Wigner. The Quinean could follow the lead of scientific realists
such as J. J. C. Smart who put pressure on anti-realists by exposing their
inability to explain the applications of electron theory, say. It’s no mir-
acle, claim scientific realists, that electron theory is remarkably effective
in describing all sorts of physical phenomena such as lightning, electro-
magnetism, the generation of X-rays in Roentgen tubes and so on. Why is
it no miracle? Because electrons exist and are at least partially causally re-
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sponsible for the phenomena in question. Furthermore, it’s no surprise that
electron theory is able to play an active role in novel discoveries such as
superconductors. Again this is explained by the existence of electrons and
their causal powers. There is, however, a puzzle here for the anti-realist.
As Smart points out:

Is it not odd that the phenomena of the world should be such as to make a purely instru-
mental theory true? On the other hand, if we interpret a theory in a realist way, then we
have no need for such a cosmic coincidence: it is not surprising that galvanometers and
cloud chambers behave in the sort of way they do, for if there really are electrons, etc., this
is just what we should expect. A lot of surprising facts no longer seem surprising. (Smart
1963, 39)

There is an important disanalogy, however, between the case of elec-
trons and the case of sets. Electrons have causal powers – they can bring
about changes in the world. Mathematical entities such as sets are usually
taken to be causally idle – they are platonic in the sense that they do not
exist in space-time nor do they have causal powers. So how is it that the
positing of such platonic entities reduces mystery?13 Cheyne and Pigden
(1996) have recently suggested that in light of this, the Quinean is commit-
ted to causally active mathematical entities. While I dispute the cogency
of Cheyne’s and Pigden’s argument (see Colyvan 1998), I agree that there
is a puzzle here. The puzzle is this: on Quine’s view, mathematics is seen
to be part of a true description of the world because of the indispensable
role mathematics plays in physical theories, but the Quinean account gives
us no indication as to why mathematics is indispensable to physical sci-
ence. That is, Quine does not explain why mathematics is required in the
formulation of our best physical theories and, even more importantly, he
does not explain why mathematics is so often required for the discovery of
these theories. Indispensability is simply taken as brute fact.

It might be tempting to reply, on behalf of Quine, that mathematics is
indispensable because it’s true. This, however, will not do. After all, there
are presumably many truths that are not indispensable to our best scientific
theories. What is required is an account of why mathematical truths, in
particular, are indispensable to science. Moreover, we require an account
of why mathematical methods which, as Steiner points out (Steiner 1995,
154), are closer to those of the artist’s than those of the explorer’s, are
reliable means of finding the mathematics that science requires. It is these
issues, lying at the heart of the Wigner/Steiner puzzle, that Quine does not
address.

The above statement of the problem for Quine can easily be extended to
any realist philosophy of mathematics that takes mathematical entities to
be causally inert. This suggests that one way to solve the puzzle in question
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is to follow Cheyne’s and Pigden’s suggestion and posit causally active
mathematical entities (a la early Maddy (1990) or Bigelow (1988)). Now
such physicalist strategies may or may not solve Wigner’s puzzle.14 But it
is not my concern in this paper to decide which realist philosophies fall foul
of Wigner’s puzzle and which do not. My concern is to demonstrate that
realist philosophies of mathematics do not, in general, escape the problem.
In particular, I have shown that Quine’s influential realist philosophy of
mathematics, at least if taken to be about abstract objects, succumbs to
Wigner’s puzzle.

5. FIELD’S FICTIONALISM

Hartry Field’s (1980) response to Quine’s argument is to claim that math-
ematics is, in fact, dispensable to our best physical theories. He adopts
a fictional account of mathematics in which all the usually accepted sen-
tences of mathematics are literally false, but true-in-the-story of accepted
mathematics. There are two parts to Field’s project. The first is to justify
the use of mathematics in its various applications in empirical science
(since, according to Field, mathematics is a body of false propositions).
To do this Field argues that mathematical theories don’t have to be true to
be useful; they merely need to be conservative. This is, roughly, that if a
mathematical theory is added to a nominalist scientific theory, no nominal-
ist consequences follow that wouldn’t follow from the nominalist scientific
theory alone. The second part of Field’s program is to show that our best
scientific theories can, in fact, be nominalised. To this end he is content to
nominalise a large fragment of Newtonian gravitational theory. Although
this is a long way short of showing that all our current best scientific the-
ories can be nominalised, it is certainly not trivial. The hope is that once
one sees how the elimination of reference to mathematical entities can be
achieved for a typical physical theory, it will not seem unreasonable to
expect that the project could be completed for other scientific theories.

There are many complaints against Field’s program.15 While such de-
bates are certainly not without interest, I will not discuss them here.
Instead, I wish to point out that despite Field’s careful attention to the
applications of mathematics, he leaves himself open to Wigner’s puzzle.
Field explains why we can use mathematics in physical theories – because
mathematics is conservative. He also explains why mathematics often finds
its way into physical theories – because mathematics simplifies calcula-
tions and the statement of these theories. What he fails to provide is an
account of why mathematics leads to simpler theories and simpler calcula-
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tions. Moreover, Field gives us no reason to expect that mathematics will
play an active role in the prediction of novel phenomena.16

If I’m correct that facilitating novel scientific predictions (via mathem-
atical analogy) is at least partly why we consider mathematics indispens-
able to science, then Field has not fully accounted for the indispensability
of mathematics until he has provided an account of the active role math-
ematics plays in scientific discovery. So although Field did not set out
to provide a solution to this particular problem of applicability (i.e. the
Steiner/Wigner problem), it seems that, nevertheless, he is obliged to. (In-
deed, this was the basis of my criticism of Field in Colyvan (1999).) On
the other hand, if this shortcoming of his project is seen (as I’m now sug-
gesting) as part of the more general problem of applicability – a problem
that Quine too faces – Field’s obligation in this regard is not so pressing.
In short, it’s a problem for everyone.

Now the fact that Field does not provide a solution to Wigner’s puzzle
does not mean that he cannot do so. But whether he can provide a solution
or not, the puzzle needs to be discussed and that is all I am arguing for
here. Still, let me put to rest one obvious response Field may be tempted
with.17 He might appeal to the structural similarities between the empirical
domain under consideration and the mathematical domain used to model
it, to explain the applicability of the latter. So, for example, the applic-
ability of real analysis to flat space-time is explained by the structural
similarities between R

4 (with the Minkowski metric) and flat space-time.
There is no denying that this is right, but this response does not give an
account of why mathematics leads to novel predictions and facilitates sim-
pler theories and calculations. Appealing to structural similarities between
the two domains does not explain, for example, why mathematics played
such a crucial role in the prediction of electromagnetic radiation. Presum-
ably certain mathematical structures in Maxwell’s theory (which predict
electromagnetic radiation) are similar to the various physical systems in
which electromagnetic radiation is produced (and it would seem that there
are no such structural similarities with the pre-Maxwell theory). But then
Wigner’s puzzle is to explain the role mathematical analogy played in
the development of Maxwell’s theory. The fact that Maxwell’s theory is
structurally similar to the physical system in question is simply irrelevant
to this problem.

6. CONCLUSION

To sum up then. I agree with Steiner that the applicability of mathem-
atics presents a general problem. What I hope to have shown, and what
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Steiner does not address, is that the problem exists for at least two major
contemporary positions in the philosophy of mathematics. Moreover, the
two positions I discuss – Field’s and Quine’s – I take to be the two that
are the most sensitive to the applications of mathematics in the physical
sciences. The fact that these two influential positions do not seem to be able
to explain Wigner’s puzzle, clearly does not mean that every philosophy of
mathematics suffers the same fate. It does show, however, that Wigner’s
puzzle is not merely a difficulty for unfashionable formalist theories of
mathematics.

While the problems I’ve discussed in this paper for both Quine and
Field are not new, they can now be seen in a new light. Previously each
problem was seen as a difficulty for the particular account in question (in
the context of the realism/anti-realism debate). That is, whenever these
problems were discussed (and I include myself here (Colyvan 1999), they
were presented as reasons to reject the account in question, in favour of
another. If what I’m suggesting now is correct, that is the wrong way
of looking at it. There are striking similarities between the problem that
Burgess and I have pointed out for Field and the problem that Balaguer
and others have pointed out for Quine. I claim that these problems are best
seen as manifestations of the unreasonable effectiveness of mathematics.
Moreover, these difficulties seem to cut across the realism/anti-realism de-
bate and thus deserve careful attention from contemporary philosophers of
all stripes – realists and anti-realists alike.18

NOTES

1 By calling it ‘a puzzle’ I do not mean to trivialise it. On the contrary, as I will argue in
this paper, I think it is a deep and important problem in the philosophy of mathematics.
2 For example: Paul Davies (1992, 140–60); Freeman Dyson (1964); Richard Feynman
(1965, 171); R. W. Hamming (1980); Steven Weinberg (1986) and many others in Mickens
(1990).
3 Saunders Mac Lane (1990), for example, explicitly takes the puzzle to be a puzzle for
formalist philosophies of mathematics. Others have taken the problem to be a problem for
anti-realist philosophies of mathematics generally. See, for example, Paul Davies (1992,
140–60) and Roger Penrose (1990, 556–7). One exception here is Philip Kitcher (1984,
104–5) who presents it as a problem for platonism. I will discuss, what is in essence,
Kitcher’s problem in Section 4.
4 This is the problem of explaining the validity of mathematical reasoning in both pure and
applied contexts – to explain, for instance, why the truth of (i) there are 10 Victorian-based
AFL football teams, (ii) there are 6 non-Victorian AFL football teams and, (iii) 6+10 = 16,
implies that there are 16 AFL football teams. (The problem is that in (i) and (ii) ‘10’ and
‘6’ seem to act as names of predicates and yet in (iii) ‘10’ and ‘6’ apparently act as names
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of objects. What we require is a constant interpretation of the mathematical vocabulary
across such contexts.
5 Steiner distinguishes between two quite different, but equally puzzling, ways in which
mathematics has facilitated the discovery of physical theories: Pythagorean analogy and
formalist analogy. Although this distinction is of considerable interest, it has no bearing
on the main thesis of this paper, so I will ignore it. See Colyvan (2000) and Steiner (1998,
2–11) for details.
6 Indeed, there was very little (if any) empirical evidence at the time for the displacement
current.
7 The first term on the right of Equation (1) is the conduction current and the second on
the right is the displacement current.
8 Actually the story is a little more complicated than this. Maxwell originally had a
mechanical model of electromagnetism in which the displacement current was a physical
effect. (For the details of the relevant history, see Chalmers (1973), Hunt (1991) and Siegel
(1991).) This, however, does not change the fact that there was little (if any) empirical
evidence for the displacement current and the reasoning that led to the prediction of elec-
tromagnetic radiation went beyond the assumptions on which either the equations or the
mechanical model were based (Steiner 1998, 77–8).
9 Also recall Weinberg’s reference to Jules Verne in the passage I quoted earlier and
Steiner’s remark (again quoted earlier) about the mathematician being more like an artist
than an explorer.
10 So, for example, holism counsels us to believe all of quantum theory (since it’s our best
theory of the sub-atomic), and this involves realism about all the entities quantified over in
this theory. In particular, it rules against believing in some of the entities (electrons, say)
but not others (complex numbers, say).
11 For example, see Maddy (1992) for a discussion of the tensions between naturalism and
holism in Quine’s philosophy of mathematics.
12 Note that a theory may be preferred because of the richness of the mathematical concepts
it has to draw upon (for both purposes of analogy and description). For example, Geoffrey
Hellman has argued against scientific theories that are limited to constructive mathematics
on these grounds (Hellman 1992) and Alan Baker has argued that mathematics itself is
often required for scientific progress (Baker, forthcoming). It is clear, I think, that in such
cases we are not concerned with merely the semantic applicability of mathematics; we are
also concerned with the applicability of mathematical concepts (and even the applicability
of the concept of mathematics itself).
13 A few people have pointed to this problem in Quine’s position (see Balaguer (1998,
110–1), Field (1998, 400), Kitcher (1984, 104–5) and Shapiro (1997, 46)).
14 It’s not clear to me that they do.
15 See, for example, Malament (1982) and Resnik (1985) for some of these.
16 I discuss this matter in more detail in Colyvan (1999) and in Chapter 4 of Colyvan
(2001). John Burgess (1983) raises similar issues.
17 Mark Balaguer seems to have something like this response in mind when he says that
“I do not think it would be very difficult to solve this general problem of applicability [of
mathematics]” (Balaguer 1998, 144). It should also be mentioned that if this response were
successful, it would also be available to realist philosophies of mathematics
18 Earlier versions of this paper were presented at the University of Tasmania School of
Mathematics and Physics Colloquia, at the 1999 Australasian Association of Philosophy
Conference, to the Department of Philosophy at Smith College, to the Department of Philo-
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sophy at the University of California, Santa Cruz, and to the Department of Philosophy
at SUNY, Stony Brook. I thank the participants in the subsequent discussions for their
valuable contributions. I also gratefully acknowledge the help of Adam Elga, Mark Steiner,
Neil Thomason, and the anonymous readers for Synthese.
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