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Abstract In this paper I discuss the kinds of idealisations invoked in normative
theories—logic, epistemology, and decision theory. I argue that very often the
so-called norms of rationality are in fact mere idealisations invoked to make life
easier. As such, these idealisations are not too different from various idealisations
employed in scientific modelling. Examples of the latter include: fluids are incom-
pressible (in fluid mechanics), growth rates are constant (in population ecology), and
the gravitational influence of distant bodies can be ignored (in celestial mechanics).
Thinking of logic, epistemology, and decision theory as normative models employing
various idealisations of these kinds, changes the way we approach the justification of
the models in question.
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1 Introduction

It is very natural to think of various theories in formal epistemology as theories of
rationality. Bayesian epistemology can be thought of as a theory of how we ought to
organise and update our beliefs; decision theory can be thought of as a theory of how
we ought to make decisions; logic can be thought of as a theory of how we ought to
draw inferences.1 Thus construed, the axioms and assumptions of these theories are

1 Of course, these theories do not have to be thought of as applied in this way. There is nothing wrong,
for instance, with thinking of logic as divorced from applications of human reasoning and as a purely
mathematical study of the abstract consequence relation. Be that as it may, these three theories draw
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motivated by canons of rationality and would seem to have little to do with empir-
ical evidence. Indeed, when empirical studies show that human subjects reason in
ways that conflict with such theories (Wason 1962; Wason and Johnson-Laird 1972;
Kahneman et al. 1982) it is common to see this as evidence for the irrationality, or at
least a limitation in the rationality, of humans.

I will argue that although these theories are normative, they are not normative
through and through. The main aim of this paper is to begin the task of disentan-
gling the normative elements of these theories from other kinds of idealisations and
assumptions. The presence of such non-normative assumptions makes these theories
of rationality similar in many respects to models found elsewhere in science. Indeed, I
think of the theories in question as normative models of belief, decision, and inference.
But in order to see the connection with empirical models, I will first need to say a little
about scientific models and the idealisations we find in them.

2 Two kinds of model

Scientific models can be either explanatory or descriptive (or some mixture of the
two). The former are models designed to tell us how the target system works, without
too much attention devoted to getting the details of the system right. The latter are
designed to capture specific details of the target system without much attention to
why the system is the way it is.2 Normative models should be contrasted with scien-
tific models; normative models are not supposed to model actual behaviour or explain
actual behaviour; rather, they are supposed to model how agents ought to act.3 It will
be helpful to have in mind a concrete example of a typical scientific model.

2.1 A scientific model

Consider the Lotka-Volterra model from population ecology. This mathematical model
describes the populations of a predator–prey pair via two coupled first-order differen-
tial equations:

dV

dt
= r V − αV P

d P

dt
= βV P − q P

Footnote 1 continued
at least some of their philosophical significance from the fact that they have natural applications in human
reasoning, and it is these applications I am interested in here. Such applications are also why these theories
find scientific applications (e.g. Colyvan et al. 2011; Regan et al. 2006).
2 Think of a city street map as a good example of a descriptive model and evolutionary models as examples
of explanatory models.
3 As I have already mentioned, the prime examples of the normative models are decision theory, Bayesian
epistemology, and logic. Indeed, these are usually taken to constitute the “standard picture of rationality”
(Stein 1996).
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where V is the population of the prey, P is the population of the predator, r is the
intrinsic rate of increase in prey population, q is the per capita death rate of the preda-
tor population, α is a measure of capture efficiency, and β is a measure of conversion
efficiency.

Like many scientific models, the Lotka-Volterra equations both describe the target
system and explain certain behaviour of the target system. But for present purposes we
can set this complication aside and think of scientific models such as these as descrip-
tive models, describing given target systems. Our real interest is in the idealisations
we find in the model and, in particular, why these idealisations are there.

The Lotka-Volterra model is designed to capture the behaviour of the system, but
only at a certain level of generality. It cannot faithfully represent all aspects of the
target system. It does not, for instance, tell you which of the predators will eat which
prey nor how long each given member of a population will live. It is designed to give
population-level information about the abundance of the two populations in question.
In order to achieve this, the model invokes a number of idealisations. Some of these
include:

(a) Population abundance is discrete and yet the model treats it as continuous.
(b) The model treats the growth rates as constants.
(c) The model treats the predator as a specialist (i.e. the predator eats only the prey).
(d) The model treats the prey as having only one predator.
(e) Responses to changes in population abundances are instantaneous.

We find two quite different kinds of idealisations at work here. There are those
invoked (purely) for mathematical convenience (e.g. treating population abundance
as continuous). I will call these idealisations the mathematical convenience kind.
These idealisations are usually invoked in order to employ familiar and well-under-
stood mathematical machinery. Although such a move is very common in science, its
justification is anything but straightforward. When the mathematics in question is not
only convenient but also appropriate in some sense (because, for example, it mirrors
the relevant structures in the target system), it is easy to justify. But in other cases, there
are clear mismatches between the convenient mathematics and the target system (as
in the case under discussion here: with a continuous model of population abundance).
In other cases it is not known whether there are structural mismatches between the
mathematics and the target system (such as when modelling time with real numbers).
I will set such issues aside. Scientists clearly do invoke mathematical machinery for
reasons of convenience and that is enough for present purposes.

Now consider another kind of idealisation: those invoked because they are close
enough to the way things are. It is hoped that such assumptions result in models that
are good enough for the purposes at hand (e.g. growth rates are constant). Call these
idealisations the close enough for jazz kind.4 There is an ambiguity here in what it
means to be “close enough”. Sometimes it might be that the idealisation itself is close
to the way things are in the world. For example, some predator might be almost a
specialist, in that it rarely eats anything other than the prey represented in the above

4 Here I am borrowing a phrase from musicians. The suggestion is that the tuning is not perfect but it is
close enough for the purpose at hand, namely performing jazz.
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model. Alternatively, we might think of an assumption as being close enough in the
sense that when included in the model, it delivers results close to what is observed in
the target system. Obviously these are not the same; some assumptions might be close
in the former sense but due to sensitivity of initial conditions, result in wildly different
outcomes. Since it is the closeness to observation that is important in a great deal of
scientific modelling, I assume that it is this sense of closeness we have in mind here.
Although in particular circumstances, the former sense of closeness can be used as a
surrogate for the latter.

Finally, I note that many idealisations are a mixture of both of the above. For exam-
ple, the idealisation that responses are instantaneous is both mathematically convenient
and, for the most part, is close enough to the behaviour of real populations.5 Be that
as it may, it is still useful to distinguish these two quite different motivations for the
idealisations in question.

2.2 Normative models

First a note about what I mean by the claim that decision theory, Bayesian episte-
mology, logic, and the like are normative theories. These theories can, of course, be
used to describe or predict what real people will do, and thus construed the theories
are descriptive. Indeed, construed this way these theories are just empirical models;
they are no different from what we find elsewhere in science (such as the population
model in the previous section). Construed as normative theories, however, these same
theories are taken to prescribe how we ought to reason, organise our beliefs, and so
forth. As I have already mentioned and as is well known, there is a great deal of
empirical evidence to suggest that human behaviour is not well described by some
of the theories in question. This has led to alternative models which purport to better
describe human behaviour. For my purposes, I wish to concentrate on the normative
construal of the theories in question: describing ideally rational agents or prescribing
our own behaviour.

Of course the two construals just articulated are related. David Lewis (1983, p. 114)
suggests that

[d]ecision theory (at least, if we omit the frills) is not esoteric science, however
unfamiliar it may seem to an outsider. Rather, it is a systematic exposition of the
consequences of certain well-chosen platitudes about belief, desire, preference,
and choice. It is the very core of our common-sense theory of persons, dissected
out and elegantly systematized.

5 It might be argued that the mathematical convenience idealisations are all close-enough-for-jazz or that
mathematical convenience idealisations are only successful when they are, in some sense, close enough to
how things are. But this is not right, as the idealisation of continuous populations shows. Populations are
discrete and properly measured by natural numbers; there is no sense in which real numbers measuring
population abundance is close to the truth. The use of real analysis here is purely for mathematical conve-
nience. Of course the resulting model will need to be close enough in the sense of agreeing with empirical
results, but the primary motivation here seems to be mathematical convenience: differential equations are,
in many way, more convenient than the corresponding difference equations.
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So we would expect the descriptive theory to inform the normative theory and
since the normative theory is so closely related to the descriptive theory, the normative
theory may be set to descriptive purposes. Still, the intuitive distinction between the
descriptive construals of these theories and the normative is clear enough, even though
that distinction may not stand up to closer scrutiny.

Now consider some of the idealisations or assumptions we find in decision theory
(Von Neumann and Morgenstern 1944):

(i) Beliefs come in (continuous) degrees.
(ii) Utilities are dense (and usually represented to be continuous as well).

(iii) Connectedness: there are no incommensurable outcomes.
(iv) Preferences are transitive: if p1 is preferred to p2, and p2 is preferred to p3,

then p1 is preferred to p3.
(v) The Archimedian axiom: Whenever an agent has preferences p1 < p2 < p3

there will be a lottery (or “mixture”) of p1 and p3 such that the agent is indif-
ferent between p2 and the lottery.

There are apparently three different kinds of idealisation here. We find idealisa-
tions for mathematical convenience as in the case with scientific models (e.g. that
beliefs come in (continuous) degrees). We also find the close-enough-for-jazz kind
(e.g. connectedness). But we also find a third kind of idealisation, which I will call
normative constraints. These are idealisations imposed by rationality; to fail to meet
such constraints would apparently be a failure of rationality. An example of such a
constraint is (arguably) that preferences are transitive. As before, idealisations may be
motivated by more than one of these considerations.

Since it might be initially tempting to think of all of (i–v) as normative, let me say
a few words about why this is not the case. Consider the idealisation that degrees of
belief are continuous rather than discrete. There could be no normative motivation
for this. Indeed, this assumption looks very much like the assumption in population
ecology that population abundance is modelled with real numbers, or the assumption
in gravitational theory that space-time is modelled with a continuous space-time man-
ifold. Another way of seeing that this is not a requirement of rationality is to consider
what failing of rationality we would be witnessing in an agent who had discrete beliefs,
modelled by, say, the rational numbers.6

Next consider the assumption that all outcomes are connected. This assumptions
rules out incommensurable outcomes. Again it can hardly be a requirement of ratio-
nality that there are no such outcomes. But this assumption is there because, for the
most part, outcomes are commensurable. Connectedness is close enough for many (if
not most) purposes. This idealisation also makes the mathematics more tractable, but
I take it that its primary motivation is of the close-enough-for-jazz kind. If, however,
you are committed to the view that there is widespread incommensurability, you might
look upon this idealisation as more a case of mathematical convenience. For present
purposes, it does not matter; what matters is that connectedness is not a requirement of

6 Another example of this kind of idealisation is Ramsey (1928) assumption of a morally neutral act in his
presentation of decision theory. Such an act is postulated purely for mathematical convenience and bears
similarity to point masses in celestial mechanics. Thanks to Jim Joyce for this suggestion.
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rationality. It is more like the kind of idealisation one finds in scientific models about,
for example, the topology of space-time.

I am inclined to think that of the idealisations above, only (iv)—the transitivity of
preferences—is defensible as a normative constraint. This defence is via a money-
pump argument (Ramsey 1928).7 The idea here is that if an agent violates transitivity
you can financially exploit this violation. You can arrange things so that the agent
in question effectively gives you money with nothing in return, and this, in turn, is
taken to be a hallmark of irrationality. All the other idealisations are arguably, there
for reasons of mathematical convenience or because they are close enough for jazz,
or both.

Now consider some of the idealisations or assumptions we find in classical logic:

(1) There are only two truth values.
(2) The valuation relation is a function.
(3) Every proposition in the language is assigned a truth value.
(4) The logical particles are truth functional.

Here we find the same three kinds of idealisation. We have idealisations for mathe-
matical convenience, such as that the the connectives are truth functional. There are the
close-enough-for-jazz idealisations such as that every proposition is assigned a truth
value. Then there are normative constraints such as the behaviour of at least some of
the connectives (such as the truth table for ∧). And as before, many of the idealisations
might be motivated by a mixture of more than one of the three considerations.

The existence of non-normative idealisations in logic is clear but is not often
stressed. Take the truth functionality of the connectives, for example. There is nothing
about rationality that demands this. It is clearly assumed for reasons of tractability
(or mathematical convenience). After all, why would we expect that the conditional
should be truth functional? Assuming truth functionality of all connectives just makes
life easier. Indeed, without this idealisation it is initially hard to see how to get started
with formal logic. Of course, we now have non-truth-functional connectives (such as
Stalnaker conditionals, modal operators, and intuitionistic negation) but there is no
denying the simplicity of purely truth-functional connectives. It is this simplicity that
is a prime motivation for the idealisation of truth functional connectives in classical
logic.

The case for the truth table for classical conjunction is rather different. A case can
be made that this truth table forces itself upon us—it constitutes the meaning of the
English “and” (at least in the context of a two-valued logic). Moreover, anyone who
violates the classical truth table by, say, believing “A and B” but not believing B, is
either irrational or is not grasping the meaning of “and”.8

Similarly, the idealisation that every proposition in the language takes a truth
value cannot be a requirement of rationality. After all, future contingents, vagueness,

7 Interesting arguments against the rationality of the transitivity of preferences have also been advanced
(Armstrong 1939; Luce 1956) but still there is a case to be made for transitivity as a requirement of rationality.
I set aside the plausibility of the respective cases.
8 There are some interesting alleged counterexamples to the commutativity of conjunction. For example,
“she had a sleep and went to work” differs in meaning from “she went to work and had a sleep”. Such
examples may be seen as casting doubt on the commutativity of conjunction as a normative constraint.

123



Synthese (2013) 190:1337–1350 1343

fictional discourse and the like all present prima facie examples of propositions which
fail to take truth values. In any case it cannot be a failure of rationality to hold that
future contingents, say, lack truth values. Nevertheless, the idealisation that all prop-
ositions take truth values is a good one—it holds much of the time and this is why it
is invoked. For many purposes, it is perfectly innocent. In this regard it is very similar
to the connectedness assumption in decision theory. Depending on how wide spread
you think such truth-value gaps are, the idealisation in question can be thought of as
either close enough for jazz or one of mathematical convenience. Either way, it is not
dictated by rationality.9

3 Questioning assumptions of models

So far I have argued that there are three quite different motivations for idealisations
and assumptions in normative theories and not all these motivations derive from ratio-
nality considerations—some are there for reasons of mathematical convenience or
because they are close enough for a given purpose. The different possible motivations
turns out to be of significance when we wish to criticise a model. It will not do to
criticise a scientific model as inadequate simply because it invokes idealisations or
false assumptions. Consider, for example, a criticism of a population model that pro-
ceeded by pointing out that populations are discrete, not continuous. This gives us no
reason to reject the model. The idealisation is indeed false but it is there, not because
it is thought to be true, but because of the mathematical convenience it affords. Other
criticisms of scientific models, however, can be made to stick. For example, we can
question the “close enough for jazz” idealisation in situations where it is not jazz:
for example, a population ecology model assuming a constant population growth rate
when in fact the growth rate is changing dramatically.10 It is important to keep track of
the status of an idealisation before launching an attack on it or on the model it belongs
to. This much is well known. Now let us turn to questioning idealisations in normative
models.

Just as in descriptive models, we can criticise a close-enough-for-jazz assumption
in a normative model when it is not jazz. For example, when dealing with fictional
discourse, it might be argued that the assumption that every proposition takes a truth
value leads to absurd results and thus should be abandoned. Even idealisations intro-
duced for mathematical convenience can be criticised: they can skew the way we
look at the phenomenon in question. For instance, the idealisation that beliefs can be
adequately represented by a real-valued function biases the debate away from more

9 Another important class of normative theories not discussed here are ethical theories. My main reason
for setting ethical theories aside is that they are usually not represented formally and my target here is
squarely on formal theories. Attempts to formalise ethical theories in order to combine them with formal
decision theory (Colyvan et al. 2010; Louise 2004; Oddie and Milne 1991) might provide an opportunity
to investigate formally-represented ethical theories along similar lines.
10 If you prefer, you might think of cases like this as cases where the idealisation is not close enough—not
even for jazz. It does not much matter how the metaphor is cashed out here; what is important is that the
idealisation in question, is benign in some settings (when the growth rate is not changing too much) and in
other settings it is not.
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complicated belief functions [such as those suggested by Shafer (1976) and Walley
(1991)]. And the idealisation that the valuation relation of logic should be a function
biases the debate away from various non-classical logics that allow propositions to be
associated with more than one truth value (Priest 2008). And of course, we can also
criticise normative idealisations (e.g. transitive preferences and the truth table for ∧)
by demonstrating that an agent can reasonably violate the idealisation in question.11

Sometimes the problem is that unintuitive consequences follow from the combined
idealisations of the model. In such cases it is hard to know where to place the blame.
What idealisations, for instance, are responsible for, the Pasadena paradox (Nover
and Hájek 2004) or the Newcomb problems of decision theory (Nozick 1969)? What
are the idealisations responsible for the sorites paradox or for explosion in classical
logic?12 In such cases, does the fault lie in some of the apparently harmless math-
ematical convenience idealisations skewing the picture or in some of the normative
or “close enough for jazz” assumptions? It can be very difficult to isolate the root
of the problem in such cases. The blame can be directed at a number of different
assumptions.13

4 Case studies

It is worthwhile looking at a couple of case studies to get a feel for how the debates
proceed in these more complicated cases. I will consider one case study from rational
belief theory and one from philosophy of logic. The point is to see how thinking in
terms of the status of the various idealisations can help us to adjudicate the debates
and we see how even constraints of rationality can be questioned.

4.1 Cox’s theorem

Cox’s theorem (Cox 1946, 1961) is a mathematical result used to defend a Bayes-
ian interpretation of the probability calculus. It tells us that any measure of belief
is isomorphic to a probability measure. It rests on a number of explicit and implicit
assumptions. The explicit assumptions are: (i) an agent’s belief in ¬P is a function
of her belief in P and (ii) an agent’s belief in P ∧ Q is a function of her belief in P
given Q and her belief in Q. The implicit assumptions include: (iii) belief is a real-
valued function, (iv) the underlying logic is classical propositional calculus, (v) the
following substitution principle holds: if an agent believes P to some degree, b, and

11 Of course there will always be other models that relax the contentious idealisations. In science we build
more complicated models and in the normative domain we have alternative logics, decision theories, and
epistemologies. But these alternative models still invoke idealisations—we just have different idealisations.
12 Explosion is an unintuitive feature of classical (and other) logic(s) that everything follows from a con-
tradiction. The sorties paradox will be discussed in more detail in one of the case studies to follow.
13 This also happens in scientific models. It is not always easy to see what the faulty assumption is in a
failed model. Even apparently innocent mathematical convenience idealisations can contribute to the failure
of scientific models. See Bueno and Colyvan (2011) for more on the relationship between mathematical
models and physical systems.
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P is logically equivalent to Q, then she believes Q to degree b and (vi) the function
in (ii) is twice differentiable.

What we have here is a model of the structure of rational belief. We then derive
results in this model and thereby take to have shown that these results are true of
rational belief. Cox’s theorem is a representation theorem. It shows that if belief has
the assumed structure, it can be modelled by the probability calculus. This is one of
many similar theorems that lend support to a subjective interpretation of the prob-
ability calculus. But some take matters further and conclude that the theorem lends
support to the thesis that the only coherent treatment of uncertainty is probabilistic
(e.g. Lindley 1982; Jaynes 1988; Van Horn 2003). But putting the theorem to work
towards such ends suggests that the assumptions (both explicit and implicit) are all
demanded by rationality. This, however, is problematic.

I have discussed the problems with such applications of Cox’s theorem elsewhere
(Colyvan 2004, 2008). Here I will mention just a couple of issues that are relevant for
present purposes. Consider assumption (iv). The assumption that the underlying logic
is classical is not justified if Cox’s theorem is to be used to argue against non-classical
systems of belief representation. And the assumption that the function in (ii) is twice
differentiable seems like an innocent mathematical idealisation, but it rules against
max and min functions used in some infinite-valued logics. Moreover, excluded mid-
dle and double negation elimination can be questioned in contexts where there is
uncertainty due to vagueness or fictional entities. This is not to say that one can never
invoke such idealisations. Indeed, such idealisations seem perfectly reasonable when
Cox’s theorem is used as a way of justifying a subjective interpretation of the proba-
bility calculus in non-fictional domains, where there are no concerns about vagueness.
The innocence or otherwise of the assumptions depends on what the theorem is being
used for. Just as in empirical models, the idealisations of the model depend on the
purpose of the model.

4.2 The sorites paradox

Recall that the sorites paradox invokes vague predicates to raise problems for classi-
cal logic. In its canonical form the paradox arises from the following two premises:
“an m-grained collection (for some suitably-large m) of sand is a heap”, and “if an
n-grained collection is a heap, so too is a (n−1)-grained collection. The second premise
is true because of the vagueness of the predicate “is a heap”. By repeated applications
of the valid argument form modus ponens, we can draw the apparently false conclu-
sion that a one-grained collection of sand is a heap. By a symmetric argument, we
can prove that a m-grained collection of sand is not a heap. The sorites argument
thus delivers genuinely contradictory conclusions. Of course, there is nothing special
about the predicate “is a heap”. We can construct a sorites paradox with any vague
predicate.

The paradox is generated by the combination of classical logic and vague predi-
cates. The debate about how to resolve the problem is ongoing, with many alternative
proposals defended. One obvious proposal is to blame the assumption of classical

123



1346 Synthese (2013) 190:1337–1350

logic that there are only two truth values.14 I suggested previously that this idealisa-
tion is motivated by mathematical convenience. Once this idealisation is dropped, the
question of the number of truth values is opened up. Answers range from three truth
values in K3 to infinitely-many truth values in the Łukasiewicz system Ł∞.

The supervaluationalists approach (Fine 1975) rejects the conditional premise, but
denies that there is a particular cut off between heaps and non-heaps. In order to do this
a non-classical logic is invoked—one that preserves the classical principle of excluded
middle by accepting odd behaviour from the disjunction connective.15 This looks like
the rejection of a normative constraint, namely, the usual truth table for disjunction.
Also sacrificed is the mathematical convenience of truth functionality for the logical
connectives. The case for the supervaluational approach usually proceeds by stress-
ing the senses in which supervaluational logic is nearly classical16 and motivating
the departures from classical logic as being minimal and forced by the paradoxical
argument. It rarely proceeds by directly challenging the truth table for disjunction.
The rejection of the truth table for disjunction is seen as the price to be paid for an
otherwise elegant solution to the paradox.

Other proposed solutions to the sorites paradox reject the validity of modus pon-
ens, as is the case with subvaluationalism (Hyde 1997).17 This again involves the
rejection of an apparently normative constraint. By contrast, the epistemicist solution
(Sorensen 1988; Williamson 1994) holds firm with classical logic. Instead, the epis-
temicist accepts the counterintuitive claim that there is a cut off between heaps and
non-heaps, but that the location of this cut off is unknowable.

Everyone in the debate is forced to give up something. Most give up classical logic,
sometimes by relaxing mathematical idealisations, such as bivalence. This move is
similar to the way scientific modellers relax idealisations of mathematical conve-
nience when these idealisations cease to be convenient or start delivering poor results.
Others in the sorties debate are prepared to give up what are apparently normative
idealisations such as a detachable conditional.18 The case for such a move is usually
presented in terms of overall elegance of the theory (or at least in terms of parity
with other elegant solutions (Hyde 1997)), rather than by direct attacks on any of the
normative idealisations themselves.

It might seem that giving up idealisations in place for mathematical convenience
should be more readily acceptable than giving up those with normative motivation.
One would thus expect that multi-valued logic would be easier to accept than, say,
supervaluationalism. But in philosophical circles, at least, this seems not to be the case.
Both multi-valued logics and supervaluationalism remain popular and are thought to be
tenable. The normative idealisations although perhaps a little more firmly entrenched
are not shielded from revision by virtue of their normative status.

14 For example, see Smith (2008) for a recent, detailed philosophical defence of such a solution.
15 Recall that in supervaluational logic, a disjunction can be true without either disjunct being true, and an
existentially-quantified formula can be true without any true instances.
16 It preserves all the theorems of classical logic, for instance.
17 Subvaluationalism is the dual of the familiar supervaluationalism but identifies truth with true in at least
one precisification (rather than in all precisifications).
18 A detachable conditional is one that supports modus ponens.
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5 The normative and the empirical

I have argued that normative models, such as rational-belief models and rational deci-
sion models, are not so different from models found in empirical science. The for-
mer have some genuinely normative idealisations, whereas the latter do not. But not
all the idealisations in normative models are normative; there are also the familiar
mathematical-convenience and close-enough-for-jazz idealisations, as in the models
found in empirical science. When a model fails to deliver what is expected of it, this
can be for a number of reasons. The falsity of one or more of the assumptions is never
the full story, and sometimes is beside the point. After all, false assumptions are found
in all models. The question is why some, but not all, models perform the tasks we
expect of them. This is an important question and one without a satisfactory answer
in the scientific-modelling literature, but an extra degree of difficulty is added when
we consider normative models.

This naturally leads to the question of what it means for a normative model to be
adequate. In the case of scientific models it is clear enough: a model is adequate just
in case it delivers the desired explanatory power, predictive accuracy, or whatever
the model was designed for. Moreover, the success or otherwise of models for many
such purposes will be empirically testable. But what is it for a normative model to be
adequate? As we have learned from the case studies, we need to pay attention to the
intended purpose of the model and the level of detail it is supposed to provide. This is
the same for empirical models. The primary purposes of normative models seems to
be to deliver good advice about decisions, inferences, the structure of beliefs and the
like—at some appropriate level of abstraction. But if this is the purpose of normative
models, it is hard to see how they are empirically testable. To test the advice given by a
normative model, we would already need to know what constitutes good advice in the
circumstances in question. Alternatively we might take the model itself as delivering
good advice simply because the advice is delivered by the model in question. We find
ourselves with a kind of Euthyphro dilemma. In either case, it is hard to see what
would constitute an empirical test of the model.

There is a way of understanding normative models that has emerged from at least
the second of the two case studies and which gives us the resources to tackle the ques-
tion of empirically testing normative models. We treat these models holistically. That
is, rather than defending each idealisation and constraint in the model, we judge the
model as a package. Here we follow the lead of modern set theory, where the axioms
of, say, ZFC are justified by a “top-down” approach—by the fruits of the theory as a
whole (Russell 1907; Gödel 1947). In set theory, the fruits include, delivering elegant
and instructive proofs of various theorems, opening up new areas of inquiry, and the
like. In case of the normative theories, the fruits might be thought to include: meshing
with intuitions about what to do in given situations, shedding light on other situations
where intuitions fail, and perhaps facilitating elegant representation theorems (where
appropriate).

It is interesting to note that the holistic approach is taken in set theory because of
the failure of the “bottom up” approach of justifying each axiom by a priori means.
It was this latter approach that led to the acceptance of an inconsistent theory: naive
set theory with its intuitively plausible but contradictory unrestricted comprehension
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axiom (Giaquinto 2002). Of course the theories we are considering here are different
in various respects, so this is merely an analogy.19 The point is that there is a way
of justifying an a priori theory such as set theory that does not depend on an axiom-
by-axiom justification. Similarly, holistic justifications of decision theory, logic and
formal epistemology are live alternatives.20

Such a “top-down” approach to justifying normative models means that they are not
fully normative. They are not fully normative in the sense that not every idealisation
has an a priori normative justification. This understanding of normative models pro-
vides yet another way in which they are similar to empirical models: as with empirical
models we are interested in whether a given model—as a whole—is adequate for the
purpose for which it was designed. There is less interest in justifying the various false
assumptions (except, perhaps, to defend some of the “close-enough-for-jazz assump-
tions as indeed being close enough). So too with normative models, according to the
proposal being advanced here. Quine (1980, p. 41) argued that “our statements about
the external world face the tribunal of sense experience not individually but only as
a corporate body”. The current suggestion is that our normative models also function
as corporate bodies.

Are normative models empirically testable on this view? In rejecting a priori norma-
tive justifications for every facet of the model, I am at least opening up the possibility
for empirical testing (and for a role for experimental philosophy). The details of how
such testing would proceed, however, will be hard to spell out. After all, the fail-
ure of even a large proportion of the population to reject, say, the logical fallacy of
affirming the consequent says nothing about the adequacy of classical logic. The more
reasonable conclusion from any such study would seem to be that people are not good
at deductive reasoning. But empirical testing is not completely irrelevant. If no-one,
including expert logicians, agrees with the logical model, one would be entitled to
question whether the model was delivering the right results. Where we draw the line
between empirical results telling against the model or against the rationality of the
test population is a subtle matter. The adjudication in question needs further work, but
it is clear that not all conflicts between empirical results of actual human behaviour
and predictions of the normative theory should be interpreted as human irrationality.21

Sometimes the normative model should take the blame. And here even the normative
idealisations of the model are not immune from revision.
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