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Abstract

A number of people have recently argued for a structural approach to
accounting for the applications of mathematics. Such an approach has been
called “the mapping account”. According to this view, the applicability of
mathematics is fully accounted for by appreciating the relevant structural
similarities between the empirical system under study and the mathematics
used in the investigation of that system. This account of applications requires
the truth of applied mathematical assertions, but it does not require the
existence of mathematical objects. In this paper, we discuss the shortcomings
of this account, and show how these shortcomings can be overcome by a
broader view of the application of mathematics: the inferential conception.

1. Introduction

There is a fairly widespread view that mathematics is applicable to the world
simply because some portion of the mathematical universe shares some struc-
tural similarity with a portion of the physical realm. So, for example, the real
numbers are (arguably) isomorphic to a single dimension of space, and this
is why real analysis can be so effectively used in kinematics. This structural
similarity may, in the best cases, be an isomorphism, though in general it
will consist simply in a mapping of some kind or other. Of course, there
will be different mappings in different applications. According to this view
of mathematical applications—the “mapping account”, as Christopher Pin-
cock (2004a) has called it—the existence of an appropriate mapping from a

C© 2011 Wiley Periodicals, Inc.

345



346 NOÛS

mathematical structure to a physical structure is sufficient to fully explain
the particular application of the mathematical structure in question.

In this paper, we will show that this account of mathematics is correct
as far as it goes, but that it does not go far enough. We will argue that
quite a bit more is required for an adequate account of applied mathematics,
and we will advance an account of applied mathematics that accommodates
central features of the application process, including the structural elements
correctly described by the mapping account. We call this view the inferential
conception of applied mathematics. We also argue that this view is neutral on
the realism/anti-realism issue in the philosophy of mathematics, and so can
be adopted by both sides of the realism/anti-realism divide.

2. Mappings and Structural Similarities

Why is it that mathematics is so useful in empirical science? One answer
is simply that mathematics is a rich source of structures and therein lies its
utility. Some mathematical structure is either designed to, or otherwise found
to, accurately capture the important structural relations of an empirical set
up, and we can thus read off important facts about the empirical set up from
the mathematics.1

On this view, the usefulness of mathematics is much like the usefulness
of a city street map. Once the structural similarity between the map and the
city’s streets is established, the map can stand in for the world. Moreover,
various hard-to-determine facts about the city can be read off rather easily
from the map. All that is required for a map to be useful is that it faithfully
represents some aspects of the city in question. It is important to note that
the map need not faithfully preserve all structural relations. For example,
the street map must preserve directional relations and is usually required to
preserve (scaled) distance relations. We have conventions in place to help
here: if point A is north of point B in the city, then the representation of
A needs to be above the representation of B on the map. And distance
relations are not literally preserved in the map—otherwise the map would be
useless. Instead, we invoke a transformation according to which a kilometer
in the city is represented in the map by a smaller length—a centimeter, say.
But we should also note that certain structural relations of the city are not
represented in the street map. The gradient of the streets is typically not
represented. Indeed, much of the utility of the map derives from the fact that
it is quite deliberately less complex than the city it represents. In other words,
the city has more structure than is represented in the map.2 It is also worth
mentioning that for a street map to be accurate, there must be a structure-
preserving mapping (in the mathematical sense) between the city and its map
(in the usual, non-technical sense). This should all be familiar enough.

According to the mapping account of mathematical applications, the ex-
planation of the utility of mathematics is no different from explaining the
utility of street maps. The idea is that there is some structure-preserving
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mapping between the world and the mathematical structure in question, and
that is pretty much the end of it.3 Well, not quite. We need to say a bit more
about the kind of mapping (i.e. isomorphism, homomorphism and so on),
but that is not thought to be too problematic. Indeed, one defender of this
view, Chris Pincock (2004a), feels no need to say anything at all about the
kind of mapping between the mathematics and the empirical set up. This is
presumably because either the kind of mapping is of no great significance
or, more plausibly, the kind of mapping will depend on the application in
question.4

There is also the issue of what we mean by ‘a structure’ and, in particular,
by ‘the structure of the world’. A structure is usually taken to be a set
of objects (or nodes or positions) and a set of relations on these (Resnik
1997; Shapiro 1997). We will adopt this standard account here. But with this
definition of structure in place, a difficulty arises when we try to talk of the
structure of the world. Put simply, the world does not come equipped with a
set of objects (or nodes or positions) and sets of relations on those. These are
either constructs of our theories of the world or identified by our theories
of the world. Even if there is some privileged way of carving up the world
into objects and relations (and, of course, it is extremely controversial that
the world co-operates in this way, providing natural joints, as it were), such
a carving, it would seem, is delivered by our theories, not by the world itself.
What we require for the mapping account to get started is something like a
pre-theoretic structure of the world (or at least a pre-modeling structure of
the world). This is clearly a problem for the mapping account.5 In the street-
map example it seems natural enough to divide the world up into streets,
rivers, coastlines and the like, but in general this will not be the case. When
there is a natural candidate pre-theoretic structure, the mapping account can
employ this structure. When there is no such structure, we might impose
some suitable structure or other and let the resulting mathematical model
help us to fine tune or revise the starting structure. Either way, the mapping
account does require having what we shall call an assumed structure in order
to get started. There is no avoiding such an assumption.

In the next section, we argue that defenders of the mapping account of
mathematical applications need to say a great deal more about the kind of
mappings used. In what follows, we will primarily focus on Pincock’s (2004a)
detailed presentation of the mapping account, though it is worth noting that
others clearly endorse something like this view (e.g., Baker 2003, Balaguer
1998, p. 144, and Leng 2002), and we will use the term “mapping account” to
refer to what we take to be the core of all such views. While the difficulties we
raise for the mapping account may well be able to be addressed by that view,
our primary purpose is to outline the inferential view of applied mathematics.
We will thus take what we see as shortcomings of the mapping account as a
motivation for the view we will present in sections 5 and 6. But we also hope
to preserve what is correct about the mapping account.
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3. Shortcomings of Pure Structuralism

There is clearly something right about the mapping account. Mathemat-
ics is a rich source of structures and when a mathematical theory finds
applications in empirical science, it is clear that the mathematics captures
certain important structural relations of the system in question. We are in
full agreement with the defenders of the mapping account thus far. The dis-
agreement is over whether this is all that needs to be said. After all, it might
be argued that the mapping account does not need to say anything about the
kind of mapping that relates the target system and the corresponding model.

In this section, we will argue that the mapping account is right as far as
it goes. But, as it stands, it is incomplete in a couple of ways. First, until the
central notion of mapping is clarified, the account is little more than a gesture
at an account. Second, certain aspects of the applications of mathematics do
not sit well with the mapping account, or at least the account does not
address some important issues arising in the application of mathematics. We
discuss each of these complaints in turn.

Pincock (2004a) quite rightly suggests that the mapping between the math-
ematical structure and the world need not be anything so tight as an isomor-
phism. After all, in most cases it is patently clear that there is more structure
in either the world or the mathematics. But for the mathematics to be useful,
it must faithfully represent structural relations in the world. So, it would
seem that the mapping cannot be just any mapping. Let’s introduce a little
formalism before we explore this issue further.

Let W be the empirical situation to be represented (or “world”), let M
be the mathematical structure to be used in the model of W , and let ϕ:
W → M be the mapping in question. There are a few structure-preserving
maps besides isomorphisms to consider: homomorphisms, epimorphisms,
and monomorphisms.6 It would seem that the mapping employed will depend
on the richness of the two structures in question, W and M. Suppose that
the world has more structure than the mathematics, in the sense that there
are either more objects or more structural relations between them in the
world than can be represented in the mathematical structure.7 In this case,
we have three options: ϕ can fail to be a homomorphism at all, it can be a
homomorphism, or can be surjective and thus be an epimorphism (i.e. it can’t
be a monomorphism)—in all three cases, some of the elements or relations
in W are not faithfully represented in M. However, if the mathematics has
more structure, then we now have a fourth option in addition to the two
previous ones: ϕ can be a monomorphism. (For practical purposes, however,
when we mathematically represent certain phenomena, we would rather have
mappings that let us preserve as much structure as possible given the problem
at hand, in which case the monomorphism option is the most significant
when the mathematics has more structure than the world.) But now the
problem arises that in order for the mathematics to be useful, we will need
to be able to move freely into and out of the mathematics, just as we can
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move freely between our street directory and the city.8 We thus need ϕ to be
invertible. This means ϕ needs to be a monomorphism. Furthermore, this,
in effect, rules out W having more structure than M. But often the world is
more complex than the mathematics used to model it. (Consider, for example,
modeling time with a 12-hour clock—essentially arithmetic mod 12. As it
stands such a clock does not allow one to make sense of 2 am on different
days, for instance.) We’ll return to these issues shortly, but for the moment,
we simply note that there are some problems here for the mapping account.
As currently formulated, the account is rather limited in the mappings it has
at its disposal. Excluding isomorphisms, which as noted are often too tight,
only monomorphisms seem a viable option.

So on the view under consideration, every application of mathematics
to empirical science must involve a monomorphism ϕ from W to M. But
because ϕ is not necessarily surjective, we may have it that the range of ϕ is
a proper subset of the codomain M. That is, there may be elements of M
that have no pre-image under ϕ. But how do we then interpret such elements
in the mathematical structure? At first blush, this might not seem like a
problem. The mathematical domain is richer than the empirical domain.
So, there will be redundant structure in M, and this structure will play
no real role. But recall that the purpose of using the mathematics is to
model the empirical situation and then presumably solve problems in the
mathematics that correspond to empirical problems. What if the solutions
to the mathematical problem have no empirical counterpart? For example,
consider a typical projectile problem in which one needs to calculate where
a projectile (of known initial velocity and position whose only acceleration
is due to gravity) will land. Of course, the displacement function for such
a projectile is a quadratic with two real solutions—only one of which is
physically significant.9 The problem is how do we know which parts of
the mathematical structure represent and which parts do not? The mapping
account is silent on this issue.

In the simple projectile example above, it is easy enough to tell that
there should be a unique solution to the problem. Moreover, it is (almost)
always clear which solution is physically significant and which is not. Both
are provided by reliable physical intuitions—projectiles do not land in more
than one place and they typically land forward of their launch site (in the
direction of the horizontal component of their initial velocity). The issue is
that such crucial information required to solve this physical problem is not
part of the mapping between mathematical structure and physical structure. In
short, the mapping account of mathematical applications is incomplete.

We use a simple example like this quite deliberately. The phenomenon we
are drawing attention to is present in even the most basic of applied mathe-
matics problems. But as the mathematical applications get more complex, not
only does the phenomenon persist, it is often more difficult to tell whether
the mathematical solutions are physically significant or not. Consider, for
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example, the generalized Dirichlet problem of finding a harmonic function
on the interior of a closed bounded region of the complex plain such that
the function agrees everywhere with a function defined on the boundary of
the region in question (Ahlfors 1979, pp. 245–251). This problem crops up
in many physical situations such as potential theory. But the problem does
not, in general, have a solution in cases where the boundary function is dis-
continuous. How are we to interpret such failures to find a solution? Are
such discontinuous boundary functions physically significant? It depends on
the physical application in question, and even then, the answer is not easy.
Furthermore, in some cases, what appear to be non-physically significant
solutions turn out to be physically significant. Consider, for example, time
dilation in Lorentz’s (1904) pre-special relativity theory of length contrac-
tion. Lorentz seemed to take the time-dilation effect as a mere artifact of
the mathematics—that is, not physically significant—presumably because of
rather natural (pre-relativistic) intuitions about the nature of time. As we
now know, Lorentz was wrong about this feature of the mathematics being
an artifact. But here we have an interesting feature of applied mathematics
that needs explaining: very often the mathematics employed either captures
more physical structure than was intended, or solutions that, from physical
considerations alone, appear not to be physically significant yet turn out to
be physically significant. As Heinrich Hertz once suggested, mathematics, it
seems, is wiser than we are.

This is one aspect of what has become known as “the unreasonable ef-
fectiveness of mathematics” (Wigner, 1960), and has been made much of by
Mark Steiner (1998) (see also Colyvan 2001b). Here we are not claiming that
this problem has no solution, just that, as it stands, the mapping account
of applied mathematics provides no solution. At the very least, the mapping
account is incomplete as a philosophical account of applied mathematics.
Moreover, the incompleteness of the mapping account is seen clearly as a
result of problems relating to the specifications of the mappings in question.

It might be argued that we are setting the bar too high here, in that we
are expecting a philosophical account of applied mathematics to provide the
details of which parts of mathematical models refer and which do not in
any given application. Surely, the objection continues, we would expect such
issues to be sorted out by context on a case-by-case basis. Our response
is to point out that we are not setting the bar so high as this. We are
simply demanding that a philosophical account of applied mathematics says
something about this issue. It may well be that a thorough treatment of the
issue will rely on the context of the individual cases, and that there will be no
fully general story about which parts of a mathematical structure represents
and which do not. But to remain completely silent on this issue is to fail to
address one of the more interesting and important issues in the philosophy
of applied mathematics. Any such account of applied mathematics is, at best,
incomplete. Silence here amounts to simply acknowledging that sometimes
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the mathematics refers to the world and sometimes it doesn’t, and there
is nothing more to be said about it. But that strikes us as giving up too
easily. Without some story about this issue that reveals how the resulting
mathematical models are useful, a serious philosophical issue is left hanging.
We take it as a desideratum of an adequate philosophical theory in any
domain that it does not leave matters hanging in this way.

Another related problem with the mapping account occurs in cases when
there is known mismatch between the empirical structure and the mathe-
matical structure. Consider, for example, the various idealizations made in
fluid mechanics (e.g., fluids are incompressible) or the various assumptions
introduced in economics (e.g., agents are ideally rational). Here there seems
to be no mapping between the empirical structures in question and the
mathematical structures. If anything, there would appear to be a mapping
between the mathematical structure and some possible, but non-actual em-
pirical structure. Such problems concerning mathematical models are well
known and have been brought to prominence in philosophy of science by
Nancy Cartwright (1983). Again, it might be thought that the various mis-
matches between mathematics and the system under study are a problem
for most accounts of applied mathematics, so it might seem a little unfair
to direct this problem at the mapping account. But plausibly the mapping
account is supposed to be a complete account of applied mathematics. Until
it can provide a satisfactory account of such idealizations, the account is at
best incomplete.10

Finally, we turn to the matter of explanation. Implicit in the mapping
account is the assumption that mathematics is no more than a convenient
representational system. The mathematics represents various features of the
physical world via the mappings. But there would seem to be cases where
mathematics plays other roles. First, and least controversially, mathematics
is able to unify various disparate phenomena (Colyvan 2001a, 2002). But
this kind of role may not be too problematic for the mapping account (see
Pincock 2007).

If mathematics is genuinely explanatory, however, this will present a se-
rious problem for the mapping account. The problem is simply that it is
hard to see how a mere representational system can provide explanations
and yet that is the only role mathematics is allowed to play in the mapping
account.11 Consider once again our map of a city. Certain facts about the
city will be more obvious in the street map—indeed, that’s the purpose of a
street map—but it would be very odd to think of the map as providing an
explanation of any facts about the city. At least, it would be odd to think
of the street map offering an explanation that wasn’t just standing proxy
for another physically-significant explanation.12 But it seems to at least one
of the present authors that, in many circumstances, mathematics may yield
explanations of various physical phenomena. Consider the algebraic expla-
nation of why, with compass and straight edge, one cannot square the circle:
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because pi is transcendental. Or consider the (standard Lotka-Volterra) ex-
planation of why all populations whose abundance exhibits cycles must be
part of a predator–prey pair: because there are no periodic solutions to
first-order differential equations and coupled first-order differential equa-
tions are equivalent to a second-order differential equation (and the latter
do allow periodic solutions).13

We won’t pursue such examples further here. We admit that the case for
mathematical explanations is controversial, but there is at least a prima facie
case for such explanations. And even this is enough for the burden of proof
to lie with the mapping account of mathematical applications. Defenders
of this view must either show how the mapping account can accommodate
mathematical explanations, or they must show that there are no such expla-
nations. Either way, considerable work is required on the mapping account
before it can be considered an adequate account of applied mathematics.14

4. An Alternative View: An Inferential Conception of Applied Mathematics

We now offer an alternative conception of the application of mathematics,
indicating in which ways it moves beyond the mapping account. In fact, the
proposal is an extension of the latter account, in that it agrees that mappings
of a variety of sorts are crucial to applied mathematics. Unlike the mapping
account, however, the proposal advanced here is not purely structural, since
it makes room for additional pragmatic and context-dependent features in
the process of applying mathematics.

The crucial feature of the proposal is that the fundamental role of applied
mathematics is inferential: by embedding certain features of the empirical
world into a mathematical structure, it is possible to obtain inferences that
would otherwise be extraordinarily hard (if not impossible) to obtain. Now,
this doesn’t mean that applied mathematics doesn’t have other roles. We
mentioned already several such roles: from unifying disparate scientific the-
ories through helping to make novel predictions (from suitably interpreted
mathematical structures) to providing explanations of empirical phenomena
(again from certain interpretations of the mathematical formalism).

All of these roles, however, are ultimately tied to the ability to establish
inferential relations between empirical phenomena and mathematical struc-
tures, or among mathematical structures themselves.15 For example, when
disparate scientific theories are unified, one establishes inferential relations
between such theories, showing, for example, how one can derive the results
of one of the theories from the other—this is, arguably, one of the points of
unifying the theories in the first place. Similarly, in the case of novel predic-
tions, by invoking suitable empirical interpretations of mathematical theories,
scientists can draw inferences about the empirical world—leading, in certain
cases, to novel predictions—that the original scientific theory wasn’t con-
structed to make. Whether novel predictions are used to support a realist
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reading of the theories involved or whether anti-realist can also make sense
of them, the important point for us here is that both parties should agree
about the importance of inference in the production of novel predictions.
Finally, in the case of mathematical explanations, inferences from (suitable
interpretations of) the mathematical formalism to the empirical world are es-
tablished, and in terms of these inferences, the explanations are formulated.
These cases illustrate the crucial inferential role that applied mathematics can
play.16

To accommodate this inferential role, it’s indeed crucial to establish cer-
tain mappings between the empirical set up and appropriate mathematical
structures. The mapping account is correct in highlighting the centrality of
these mappings. But we have to be explicit about (i) the kind of mappings
that should be invoked in each context, and (ii) how to accommodate the
inferential role of applied mathematics. In order to do that, we provide the
following three-step scheme (see Figure 1):

Empirical set up Mathematical structure
Immersion 

Derivation 

Interpretation 

Figure 1. The Inferential Conception of Applied Mathematics.

(a) The first step consists in establishing a mapping from the empirical set up
to a convenient mathematical structure.17 We call this step immersion. The
point of immersion is to relate the relevant aspects of the empirical situation
with the appropriate mathematical context. The empirical situation is taken
very broadly, and it includes the whole spectrum of contexts to which
mathematics is applied. (In the limit, this includes mathematical contexts as
well, such as when mathematicians apply set theory to arithmetic in order
to obtain new results about the latter.) As we will see, several mappings can
do the job here, and the choice of mapping is a contextual matter, largely
dependent on the particular details of the application.

(b) The second step consists in drawing consequences from the mathematical
formalism, using the mathematical structure obtained in the immersion
step. We call this step derivation. This is, of course, the key point of the
application process, where consequences from the mathematical formalism
are generated.

(c) Finally, we interpret the mathematical consequences that were obtained in
the derivation step in terms of the initial empirical set up. We call this step
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interpretation. To establish an interpretation, a mapping from the mathe-
matical structure to the initial empirical set up is needed. This mapping
need not be simply the inverse of the mapping used in the immersion
step—although, in some instances, this may well be the case. But, in some
contexts, we may have a different mapping from the one that was used in
the immersion step. As long as the mappings in question are defined for
suitable domains, no problems need emerge.18

It is worth drawing attention to the differences between our approach and
the mapping account. For a start (and this is non-trivial), our proposal is
clearly laid out in the above three steps. The first two steps, plausibly, bear
some similarity to aspects of the mapping account, but the latter account
has not been articulated in such clear and explicit terms. So, it is difficult
to compare the two in any detail. There is, however, one major and obvious
difference, and that is step three. There is nothing that resembles this step in
the mapping account.

We also note here that the above sharp distinction between the empirical
set up and the mathematical structure does not suggest that there need be
a mathematics-free description of the empirical set up. Very often the only
description of the set up available will invoke a great deal of mathematics.
Thus, it will be hard to even talk about the empirical setup in question
without leaning heavily on the mathematical structure, prior to the immersion
step. The empirical setup is the relevant bits of the empirical world, not a
mathematics-free description of it.

So far, we’ve accounted for the most straightforward cases of applying
mathematics. We can also have embedded cases of applied mathematical
structures. In these cases, after the initial immersion step, and before the
derivation and interpretation steps, we map the resulting mathematical struc-
ture into another mathematical structure, and then apply the two other steps.
That is, we derive consequences from the new mathematical structure, and
interpret the results that are obtained back into either the initial mathemat-
ical structure and then back to the empirical setting, or directly back to the
empirical set up. Once again, different mappings are crucial in each case.

The description above is idealized in two respects, since the immersion and
the interpretation steps aren’t as clean as is suggested. (i) The mathematical
formalism often comes accompanied by certain physical “interpretations”,
and (ii) the description of the empirical set up is often made already in
mathematical terms. We are not assuming, in the immersion and the inter-
pretation steps, that the empirical set up and the mathematical structures are
completely distinguished components. The crucial point is that however the
empirical set up and the mathematical structures are formulated, the appli-
cation process involves establishing mappings between them. And this is the
point of the immersion and the interpretation steps.

It is worth highlighting here that there is considerable choice about the
mappings used in both the immersion and interpretation stages. In both
cases the decision about the choice of mappings will be a matter of context,
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and pragmatic considerations come into play. Take the immersion stage first.
If, for example, we wish to determine the combined mass of a number of
objects, we should use an interpretation mapping that assigns masses—not
space-time locations, not lengths, or anything else—to each object. Similarly,
at the interpretation stage we need to make a decision about how to interpret
the sum obtained, because, in the uninterpreted mathematics, the sum is just
a real number. Nothing forces the interpretation of this number to be the
combined mass of the objects in question. Of course, in an example like this,
the choices in each direction are clear. In other cases, there may be more
than one way to get the desired result.19 And, as we’ve already argued, the
choice of interpretation will not, in general, be the inverse of the immersion
map. We will return to the issue of deciding on the suitable immersion and
interpretation mappings in section 5.4.

It might be thought that the only relevant structure is causal structure,
so the job of mathematics, on both the mapping account and the inferential
account, is to model the causal relations in the physical set up in question.
Often this will be the case, but it is important to note that the inferential
account (and perhaps the mapping account as well) is able to accommodate
structure other than causal structure. For example, Robert Batterman (2002,
p. 13) argues convincingly that “science requires methods that eliminate both
detail and, in some sense, precision”. In particular, aspects of causal detail
need to be eliminated for some explanatory purposes. An example of Batter-
man’s will help illustrate the point. Consider a stiff ribbon of steel—an Euler
strut—mounted vertically on a hard surface and loaded with weights from
above. Eventually the load will be sufficient for the strut to bend to either
the left or the right. Whether it bends one way or the other will depend on
micro-level causal factors—the trajectories of colliding air molecules, micro-
structural asymmetries in the strut, and so on. But other, more universal
questions, about the behavior of other struts made from the same and from
different materials, will require abstracting away from such detail. This more
abstract level of description and explanation involves what Batterman (2002,
p. 13) calls asymptotic reasoning and is characterized by the move away from
particular causal detail.

This form of reasoning is very important in science, and one that any
adequate account of applied mathematics must be able to accommodate. The
inferential account, in so far as it is not tied to causal structure, is well placed
to deal with this kind of inference and the examples Batterman examines.
To return to the strut case, the choice of maps at both the immersion and
interpretation stages will depend on the questions that need to be answered.
This is where context comes into play. If we are interested in the general
behavior of all such struts, no matter what rigid metal they are made from,
then we must abstract away from the particular causal detail of the case
at hand. The appropriate immersion map, in such a case, will yield Euler’s
formula:

Pc = π2EI/L2,
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where Pc is the critical buckling load for the strut, E is Young’s modulus
characteristic of the material, I is the second moment of the strut’s cross-
sectional area, and L is the length of the strut. Notice that a great deal of the
causal detail is left out of this model (there is, for example, no mention of
what the surrounding air molecules are doing), and what causal information
that is included is presented rather imprecisely (Young’s modulus summarizes
a great deal of information about the micro-causal structure of the strut).
If, on the other hand, we are interested in why the strut buckles to, say, the
left, then we will need to represent micro-causal structure such as trajectories
of nearby air molecules and so on. The choice of immersion mapping will
depend on the questions to be answered and the ultimate purpose of the
mathematical model.20

5. The Inferential Conception At Work

We will now argue that the inferential conception is not open to the difficul-
ties that we raised above for the mapping account. Along the way, we will
also provide examples that illustrate how the inferential conception works.

5.1. Connecting mathematical and empirical structures
As we saw, the mapping account is incomplete in its treatment of applied
mathematics. After all, the account doesn’t seem to have the resources to
accommodate the fact that mathematical theories often have more structure
than the empirical set up, and some of that additional structure (suitably
interpreted) has empirical implications.

From the point of view of the inferential conception, there is no difficulty
here. As we saw, on this conception, the major role of applied mathematics
consists in drawing inferences about the relevant domain of application.
This domain is typically an empirical set up, but it can also be another
mathematical domain, such as in the case of the application of mathematics
within mathematics itself. And to carry out these inferences, the richness
of structure in each step of the application process is completely dependent
on the context. Typically, there will be more structure at the mathematical
level than at the empirical one, at least if we consider the cardinality of the
domains involved. But this need not be always so. The crucial point is that
the inferential conception has the resources to accommodate all such cases,
independently of the complexities of the structures involved.

The inferential conception offers a framework in terms of which we can
conceptualize two central issues in the application of mathematics: (a) the
issue of selecting the appropriate mathematical structures to represent the
empirical set up, and (b) the issue of assessing the adequacy of these struc-
tures as representational and perhaps explanatory devices. As for (a), the
selection process typically emerges from going back and forth between the
immersion and the interpretation steps. (We need not think of the immersion
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step as being logically prior to the interpretation step.) For example, we may
select a mathematical structure that is computationally tractable, but which
produces empirically inadequate results. Or we may select a structure that,
despite its computational complexity, offers interpretations that are empiri-
cally well supported. The choice here will emerge from a careful consideration
of the benefits and costs of each option. In making this choice, we are also
assessing the adequacy of the mathematical structures under consideration,
which addresses the issue in (b).

Since the mapping account doesn’t provide such a clear framework to
conceptualize these issues, the inferential conception seems to be in a better
position to help us understand the connections between the empirical set
up and the mathematical structures. The details will emerge below when we
consider various case studies.

Finally, the inferential conception is well placed to help provide the crucial
assumed structure. Recall that the assumed structure is the structure the
modeling exercise assumes to be present in the world (or empirical set up,
as we were calling it here). Apart from cases where the assumed structure
is obvious (as in the street-map example discussed in section 2), we will
need to impose some structure on the world in order to begin the modeling
exercise. Earlier we suggested that the mapping account might treat this initial
assumed structure as defeasible and let the resulting mathematical model
help inform refinements or revisions to the initial assumed structure. The
inferential account has the resources to make revisions midstream and does
not require starting from scratch each time a more fruitful assumed structure
is conceived. This is achieved by employing the composite mappings to move
from the mathematized initial assumed structure to another mathematical
structure, where the latter may be thought to correspond to a new (revised)
assumed structure. There is no need to revise formally the initial assumed
structure because the interpretation step of the process will deliver the final
structure of the empirical set up—one informed by the modeling exercise and
one that may well be quite different from the initial assumed structure. The
mapping account may be able to solve the assumed structure problem (as we
have already suggested), but via more ad hoc and trial-and-error methods.
The increased flexibility of the inferential account allows us to approach
revisions to the assumed structure in a smoother more systematic way.21

5.2. Accommodating idealizations: a framework
As we also saw, it’s unclear how the mapping account could accommodate
idealizations and other known mismatches between the mathematical struc-
tures and the empirical settings. One way of addressing this problem from
the perspective of the inferential conception is, first, by agreeing that, in
cases involving idealizations, there’s no full mapping between the empirical
set up and the mathematical structures. After all, nothing in the empirical
world literally and completely corresponds to what is being presupposed
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in cases involving idealizations. However, although there are no full map-
pings between the empirical world and the mathematical structures, there
are partial mappings between these empirical and mathematical structures.
Certain features of the empirical set up—although not all—can be mapped
into appropriate mathematical structures. In contexts where idealizations
are employed, the existence of a partial mapping between the empirical
and the mathematical structures explains in which respects the idealizations
work. The latter capture certain elements of the actual world, but not all of
them.

But how can these partial mappings be formulated? A formal framework
that represents these mappings very naturally is provided by the partial struc-
tures approach (see da Costa and French 2003; Bueno, French, and Ladyman
2002; and French and Ladyman 1998). The idea is that if there’s no complete
information about a certain domain of investigation, we can represent for-
mally the partiality of that information and the structural relations between
the various components involved in terms of the notions of partial structure
and partial relation. A partial structure is an ordered par 〈D, Ri〉i ∈I , where
D is a non-empty set and Ri, i ∈ I , is a family of partial relations (and I is
an index set). A partial relation Ri, i ∈ I , over D is a relation which is not
necessarily defined for all n-tuples of elements of D. The partiality of these re-
lations can be interpreted in two ways: (i) It can be interpreted ontologically,
as representing the incompleteness or partialness of the relations linking the
elements of D, or (ii) it can be interpreted epistemically, as representing the
incompleteness or partialness of our information about the actual relations
linking the elements of D. (The formalism suggested here is neutral on this
issue, and it can be interpreted in either way.) More formally, each partial
relation R can be viewed as an ordered triple 〈R1, R2, R3〉, where R1, R2,
and R3 are mutually disjoint sets, with R1 ∪ R2 ∪ R3 = Dn, and such that:
R1 is the set of n-tuples that (we know) belong to R; R2 is the set of n-tuples
that (we know) do not belong to R; and R3 is the set of n-tuples for which it
is not defined whether they belong or not to R. (Note that when R3 is empty,
R is a normal n-place relation that can be identified with R1.)

In terms of partial structures, it’s possible to define various forms of
partial mappings between these structures, such as partial isomorphism and
partial homomorphism. These partial mappings straightforwardly extend the
usual notions of isomorphism and homomorphism to partial contexts, and
they can be defined as follows. Let S = 〈D, Ri〉i ∈I and S′ = 〈D′, R

′
i〉i ∈I

be partial structures, where Ri and R
′
i are (for simplicity) binary partial

relations. We say that a partial function f : D → D′ is a partial isomor-
phism between S and S′ if (i) f is bijective, and (ii) for every x and y ∈ D,
R1xy ↔ R

′
1f (x)f (y) and R2xy ↔ R

′
2f (x)f (y). So, when R3 and R

′
3 are

empty (that is, when we are considering total structures), we have the stan-
dard notion of isomorphism. Moreover, we say that a partial function f :
D → D′ is a partial homomorphism from S to S′ if for every x and every y in
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D, R1xy → R
′
1f (x)f (y) and R2xy → R

′
2f (x)f (y). Again, if R3 and R

′
3 are

empty, we obtain the standard notion of homomorphism as a particular
case.22

Since in idealized contexts there’s no full mapping between the relevant
empirical and mathematical structures, it’s crucial that the mappings in ques-
tion be partial. However, even in idealized contexts, certain aspects of the
actual empirical situation can still be mapped to relevant features of the
mathematical structures invoked. The R1 and R2 components of the par-
tial relations in the empirical set up are mapped via the relevant partial
isomorphism or partial homomorphism into the corresponding partial re-
lations in the mathematical structure. However, the R3 components are left
open. These components correspond to the features of the idealization that
bring mismatches between the actual empirical world and the mathematical
model.

5.3. Accommodating idealizations: an example from economics
To illustrate how the framework above functions, let’s consider an example
from economic theory. In neo-classical economics, agents are modeled as
being perfectly rational (say, as maximizing their utility or expected utility
functions). But this is not how agents actually behave in the world. As we
will see, there’s a full mapping between the behavior of idealized (perfectly
rational) agents and certain mathematical structures of analysis. (This corre-
sponds to the immersion step.) Using the resources of analysis, the relevant
mathematical equations can then be solved (the derivation step). The results
are then mapped back into the behavior of the idealized agents (through the
interpretation step). However, there’s no full mapping between the behavior
of agents in the actual world and the same mathematical structures. After
all, actual economic agents do not necessarily maximize their utility func-
tions (assuming that there are such functions in the first place!). In this case,
we have at best partial mappings between the behavior of actual economic
agents (corresponding to the features that actual agents try to preserve in
practice) and the relevant mathematical structures.

There are also partial mappings between the behavior of actual agents and
different sorts of mathematical structures. This corresponds to a proposal
advanced by Herbert Simon with the notion of “satisficing”, according to
which instead of trying to maximize profit, agents only try to get “satisficing”
outcomes (see Simon 1982 and 1997). Given cognitive and computation
limitations of actual agents, we will, once again, be dealing only with partial
mappings, even though Simon’s proposal is much less idealized than those
articulated in neo-classical economics. Let’s discuss these points in turn.

As is well known, neo-classical economics provides a simple, and highly
idealized, model of rationality of economic agents in terms of maximization
(for a critical examination, see Simon 1972, 409–410). In the theory of the
firm, for instance, the goal is to maximize profits. Profit is characterized
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in terms of the difference between gross receipts from sales and cost of
production. Two conditions should be met: (i) First, the demand function
is introduced. According to that function, the quantity demanded (qd) is
a function of price; that is, qd = D(p). Since gross receipts (R) amounts
to price times quantity, the demand function determines gross receipt; that
is: R = pqd . (ii) Second, the cost function is also introduced. According
to that function, the cost of production (C) is a function of the quantity
produced (qs); that is, C = C(qs). Note that in setting up these conditions,
we are immersing certain features of the empirical set up (in this case, certain
aspects of the economic behavior of firms) into a given mathematical setting
(in this case, part of mathematical analysis).

But to be able to derive any results from this setting, an additional ideal-
ized move has to be made. It’s supposed that the quantity produced equals
the quantity demanded, that is: qs = qd . As a result, the profit is just the
difference between gross receipt and the cost of production. In symbols:
Profit = R – C = pq – C(q). The mathematical model now directly yields
the results (derivation step). In particular, it’s straightforward to determine
when profit is maximized. All we have to do is to use a bit of analysis: d(R –
C)/dq = 0.

The last step in the application process (the interpretation step) can be
obtained by interpreting the results just obtained back into the original
economic situation. A recommendation is then made with regard to the best
combination of gross receipt and cost of production so that profit can be
maximized.

Note that the economic agent is supposed to be able to solve the equations
above. To do this, the agent must have perfect knowledge of all the data, and
must be able to perform the necessary calculations without mistakes. There
is, of course, a well-developed theory of maximization in analysis, and so
there are plenty of resources to solve the relevant equations generated in
the immersion step. As a result, representing the rationality of economic
agents in terms of maximization is a convenient strategy to ensure that the
derivation step can be met; that is, that the relevant equations can be solved.
In fact, it’s tempting to read this particular case of applied mathematics as
one in which the tractability of the mathematics in the derivation stage has
guided the application process—directing, in particular, the immersion step.
After all, if economic agents are taken to maximize their utility functions,
the corresponding equations, generated in the immersion step, can be solved
through maximization techniques. It’s then sensible to make the required
idealization of regarding rationality in terms of maximization.23

However, as critics of neo-classical economics have pointed out, economic
agents hardly (if ever) have perfect knowledge of all the data, mistakes are
commonly made in mathematical calculations, and given the limitations in
computational power and the complexity of environmental constraints, the
agent may not be even able to perform the required derivations. Moreover, it’s
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not clear whether actual economic agents even try to maximize their utility
functions in the way suggested by the neo-classical conception. In other
words, the maximization approach to economics seems to be empirically
inadequate.

As a result, there are no full mappings between the actual economic sit-
uation and the mathematical models generated by neo-classical economics.
After all, the latter models don’t exactly describe the context in which eco-
nomic agents actually find themselves. This doesn’t mean, though, that neo-
classical economics has nothing to offer. As even critics of neo-classical
economics should be able to recognize, there are partial mappings between
certain aspects of the actual economic scenario (e.g. the interest that actual
firms have in increasing their profit) and the mathematical model (e.g. max-
imizing the profit function). The features of the actual economic scenario
that have counterparts in the mathematical model (corresponding to R1-
and R2-components) are mapped to that model via partial isomorphisms
(or partial homomorphisms). This indicates in which respect neo-classical
economics, although idealized, can still say something about the world, al-
beit indirectly. There are aspects of the actual world—although certainly
not every aspect—that are successfully captured by the relevant models.
Even in idealized contexts, there are partial mappings between empirical and
mathematical structures.24 Of course, this is not a defense of neo-classical
economics—nor is it meant to be one. Our point is only to illustrate how the
inferential conception can make sense of typical idealizations that are often
involved in the process of applying mathematics.

But there is a different sort of response to neo-classical economics that
is worth considering in the context of articulating an account of applied
mathematics. As is well known, Herbert Simon has developed an alternative
conception of rationality in economics, introducing the notion of bounded
rationality (see Simon 1982, 203–494, and Simon 1997, 269–443). On his
view, economic agents typically do not maximize their utility functions. They
search for a satisficing alternative; that is, an alternative that is satisfactory
given the constraints on the problem at hand. Simon’s proposal emphasizes
two basic sort of limitations involved in actual decision making in economics:
(i) limitations on the economic agent: he or she has limited computational
and cognitive power; and (ii) limitations on the nature of information about
the environment: often, the agent has at best incomplete information about
alternatives. Here are some examples. With regard to (i), given limitations on
cognitive and computational power, the agent may not be able to solve certain
equations necessary to determine the best course of action. With regard to
(ii), there may be limited information about the behavior of the demand and
the cost of production. (To accommodate mathematically this possibility, risk
and uncertainty can be introduced in the demand function and in the cost
function.) There are also cases in which both forms of limitation, (i) and (ii),
are in place. For example, the complexity in the cost function and in other
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environmental constraints can be so large that it may prevent the agent from
calculating the best course of action. Given all these forms of limitations, it
becomes clear in which sense rationality is bounded.

In practice, by being sensitive to all of these features, Simon’s conception
leads to a dramatic re-conceptualization of the immersion step, which is now
being guided by the empirical set up rather than by the ability to perform
mathematical derivations. As a result, a different approach to the role of
mathematics in economic theory emerges. (We’ll return to this point below.)
This re-conceptualization is only possible if we pay attention to the actual
cognitive processes that economic agents go through when they make de-
cisions. This is a key aspect of theories of bounded rationality. As Simons
emphasizes:

Theories of bounded rationality are more ambitious [than neo-classical theories]
in trying to capture the actual process of decision as well as the substance of the
final decision. A veridical theory of this kind can only be erected on the basis of
empirical knowledge of the capabilities and limitations of the human mind; that is
to say, on the basis of psychological research. (Simon 1987, 291; italics added.)

It’s important to highlight two significant features of theories of bounded
rationality: (i) The resulting economic theory is empirically adequate—or, at
least, in a certain respect, it is more empirically adequate than neo-classical
economics.25 After all, the theory of bounded rationality incorporates as-
sumptions about the actual behavior of economic agents and the limitations
they face that neo-classical economics is silent about. (ii) Satisficing provides
a sensible constraint on human rationality. Not only is it closer to the actual
practice of economic agents, it’s also sensitive to the actual difficulties that
these agents face when they make economic decisions.

However, there are still difficulties with Simon’s model. As we saw, neo-
classical economists made a particular idealization about the behavior of
economic agents (namely, that these agents attempt to maximize their util-
ity functions) so that certain mathematical theories from analysis could be
used to obtain the relevant derivations. With Simon’s theory, that particular
idealization is dropped. Nevertheless, it’s unclear which mathematical theory
could be used to obtain derivations regarding satisficing decisions (rather
than maximizing ones). As a result, adjustments have now to be made at
the mathematical level to obtain derivations that in the neo-classical pro-
posal could be readily obtained through maximization techniques. Rather
schematically, we could say that whereas in neo-classical economics we have
a mathematical model in search of the actual economic world, in satisficing
economics we have an economic world in search of a mathematical model.

In the end, however the mathematical adjustments required by Simon’s
proposal play out (see Simon 1987 and 1992 for details), there will be at
best partial mappings between the actual economic situation and the new
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mathematical models, given that the economic situation is now thought of as
fundamentally incomplete. As we saw, the situation is incomplete with regard
to both the information that economic agents have and the agents’ cognitive
and computational capacities. Both sources of partiality (or incompleteness)
can be accommodated by the inferential conception, using the partial struc-
tures framework. First, the limited information that economic agents have
is accommodated in terms of partial relations: the R1- and R2-components
of a partial relation correspond to the information that the agents actually
have, whereas the R3-component involves those chunks of information the
agents fail to have so far. Second, the agents’ computational and cognitive
limitations can be represented by the partial mappings themselves (partial
isomorphism and partial homomorphism). As we saw, these mappings only
preserve some structure (and not all the structure) of the relevant context of
investigation. This can be seen as a limitation in the computational capacity
of the agents, who are only able to transfer a limited amount of information
from the empirical set up to the mathematical model. Moreover, as we saw
above, these partial mappings are partial functions, and so they aren’t de-
fined for every element in their domains. This can be seen as an expression
of the limited cognitive capacity of the agents, who are able to know only a
certain portion of the overall context of investigation. As a result, it’s natural
to expect that there will only be partial mappings from the relevant features
of the actual economic situation to the relevant mathematical models.

To sum up, it now becomes clear that, also in Simon’s case, partial isomor-
phisms or partial homomorphisms are central in the immersion step. These
mappings allow us to move from the limitations of the empirical set up (the
partiality of information that agents have and their limited cognitive capaci-
ties) to the appropriate mathematical models. Similarly, after derivations are
obtained, the interpretation step can also be implemented with partial iso-
morphisms or partial homomorphisms. After all, as we saw, the empirical
set up is now characterized by partial information, and so only partial map-
pings will hold from the mathematical model back to the empirical set up. In
the end, partial mappings are crucial even when we deal with less idealized
models, such as those developed by Simon.

5.4. Mathematics: unification, novel predictions, and explanation
How can the inferential conception accommodate the multiple roles that
mathematical theories play in applied contexts? In particular, how can the
conception make sense of the use of mathematical theories in the unifica-
tion of otherwise disparate scientific theories, in making novel predictions,
and in providing mathematical explanations? To answer these questions, the
pragmatic and contextual factors involved in the application of mathematics
must be taken into account. The inferential conception will highlight the
function played by inferences in each of these roles. But to cash out the de-
tails in each case will require slightly different stories regarding the pragmatic
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and context-dependent factors, and ultimately, the story will depend on the
commitment on the debate regarding realism and anti-realism in the philos-
ophy of mathematics. However, as we will see, the inferential conception still
manages to be neutral on this issue.

One way of thinking about the use of mathematics in unification, novel
predictions, and mathematical explanations is in terms of epistemic acces-
sibility, highlighting the function that inferences play in all of these issues.
In fact, unification, novel predictions, and explanations are ultimately due
to the inferential role of mathematics. As noted in Section 4 above, each of
these three uses of mathematics can be formulated in terms of appropriate
inferences between the relevant empirical and mathematical structures. Let’s
consider them in turn.

To unify different domains, inferential relations have to be established be-
tween them. For instance, by introducing complex numbers into the theory of
differential equations, various solutions to these equations can be unified (for
a discussion, see Colyvan 2002). This means that a multitude of apparently
unrelated solutions to differential equations can be systematically brought
together as part of a larger structure. How is this result achieved? In this case,
we have two mathematical domains: (a) one is characterized by the theory
of differential equations and a multitude of solutions to these equations; (b)
the other involves the theory of complex numbers. The former domain looks
rather disconnected, with the various solutions bearing almost no relation to
each other. However, by bringing complex numbers into this domain, we can
make sense of the way in which the various solutions are in fact connected
to each other. The crucial work here is to bring, in the immersion step, some
structure of the complex numbers into the theory of differential equations.
As a result, in the derivation step, we can determine how various solutions
to differential equations are related. In other words, this is a case where new
inferential relations among solutions to differential equations are determined
by complex numbers. Unification emerges here as the result of establishing
such inferential relations among apparently unrelated things.

To provide novel predictions, inferences must also be established—
particularly in the interpretation step. What is crucial here is to interpret
suitably the mathematical structures so that relevant predictions can be made
about the empirical set up. For example, when Dirac found negative energy
solutions to the equation that now bears his name, he carefully devised phys-
ically meaningful interpretations of these solutions. He first ignored these
negative energy solutions as non-physical, and took them to be just an ar-
tifact of the mathematics (as is commonly done in similar cases in classical
mechanics). Later, however, he devised a physically meaningful interpretation
to these negative energy solutions in terms of “holes” in a sea of electrons.
But the resulting interpretation was empirically inadequate, since it entailed
that protons and electrons had the same mass. Dirac finally devised yet an-
other interpretation of the same mathematical formalism. He interpreted the
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negative energy solutions in terms of a new particle that had the same mass
as the electron but opposite charge. A couple of years after publishing his re-
sults, the positron was detected (for further details and references, see Bueno
2005).

Note the role of non-structural pragmatic and contextual considerations
here. First, taking the negative energy solutions as non-physical is a prag-
matically motivated interpretation of the formalism. And it goes beyond the
formalism in a non-structural way, since it denies that certain features of
the mathematical structure represent aspects of the physical world. Second,
taking the negative energy solutions to stand for “holes” in a sea of elec-
trons emerged in the context of accepted theoretical results—in particular,
Pauli’s exclusion principle—and it initially made perfect sense in light of such
results. Finally, the rejection of the “hole” interpretation for the positron in-
terpretation was motivated by extra-structural, contextual considerations.
In particular, the need for the interpretation to be empirically adequate in
the context of accepted theoretical results about the mass of protons and
electrons motivated Dirac to develop the positron interpretation. And it’s
worth explicitly noting that all of the interpretations in question are map-
pings from a mathematical structure to the physical set up, and they are not
uniquely determined by the structure alone—hence the need for pragmatic
and contextual considerations in the selection of suitable mappings.

This example illustrates that to obtain novel predictions from a mathe-
matical framework, the crucial work is done in the interpretation step. Dirac
used the same equation to generate two radically different physical interpre-
tations: one turned out to be empirically inadequate, but the other played
a central role in the (novel) prediction of the positron. Here, once again,
the key move is to establish, as part of the interpretation step, appropriate
inferential relations.

This example also illustrates how the inferential conception explains which
parts of the mathematical models refer and which do not. First, the concep-
tion provides a framework to locate and conceptualize the issue: the work is
ultimately done at the interpretation step. Some interpretations are empiri-
cally inadequate, and thus fail to provide an entirely successful account of the
application process. Dirac’s interpretation of the negative energy solutions
as ‘holes’ clearly illustrates this point. However, despite being at best only
partially successful, such empirically inadequate interpretations can be very
helpful in paving the way for empirically successful interpretations. They
offer some understanding of how the world could be if the interpretation
were true, and they can lead the way to interpretations that are empirically
supported. Again, Dirac’s interpretation of the negative energy solutions in
terms of the ‘positron’ beautifully illustrates this point. As a result, the infer-
ential conception sheds light on the issue of how mathematical models with
non-referring elements can be useful. Although the inferential conception
cannot provide a recipe for identifying which interpretations will eventually



366 NOÛS

be empirically successful—and it’s unclear that we should expect that any
proposal could deliver that—the account offers a framework in terms of
which the various options can be suitably represented and assessed.

Finally, to articulate mathematical explanations it’s also crucial to estab-
lish inferential relations between mathematical structures and the (suitably
interpreted) empirical set up. The key inferential moves emerge here in the
immersion and in the interpretation steps. For example, we mentioned above
the case of the standard Lotka-Volterra explanation of why all populations
whose abundance exhibits cycles must be part of a predator–prey pair. The
mathematical explanation emerges from three mathematical facts: (a) there
are no periodic solutions to first-order differential equations; (b) coupled
first-order differential equations are equivalent to a second-order differential
equation, and (c) second-order differential equations allow periodic solu-
tions. These three facts are part of the mathematical structure invoked to
generate the need for a predator–prey pair in the case of populations whose
abundance exhibits cycles. Of course, the key move here is to establish ap-
propriate inferential relations (in this case, by finding suitable mappings)
between the biological domain and the mathematical structure, so that the
relevant explanation can be obtained. In particular, one needs to establish a
biologically significant interpretation of periodic solutions, and a mathemat-
ically sound reading of the predator–prey pair. The latter is achieved in the
immersion stage, and the former in the interpretation step. In other words,
attention is needed both in the immersion and in the interpretation stages, so
that the relevant mathematical facts (namely, (a)–(c), above) can be invoked
to yield the appropriate derivations.

These considerations sketch how the inferential conception deals with
three central issues that the mapping account failed to do justice to. As
we saw, what mathematical unification, novel predictions by mathematical
reasoning and mathematical explanations have in common are the various
inferential roles played by mathematics. In some instances, mathematics pro-
vides additional entities to quantify over. This was the case of the use of
complex numbers to establish new inferential relations among solutions to
differential equations. In other cases, mathematics may have a heuristic value,
in the sense that the mathematical formalism is the source of interpretations
that are physically meaningful—and these interpretations generate, in turn,
significant inferences, namely, novel predictions. This was the case of Dirac’s
inference regarding the positron. And in yet other cases, mathematics has an
explanatory role, and again this is accomplished by establishing inferential
relations between suitably interpreted mathematical structures and empirical
phenomena. This was the case of the Lotka-Volterra explanation.

Can both realists and anti-realists about mathematics adopt the infer-
ential conception? We think so. What will be different between realist and
anti-realist accounts of mathematics is the way in which each view interprets
the success in obtaining the inferences discussed above. For the platonist,
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inferences used in the successful unification of different (mathematical) the-
ories, or in the prediction of novel phenomena via the (indispensable) use
of mathematical theories, or in the mathematical explanation of phenomena
support the realist commitment to the corresponding mathematical entities.
After all, quantifying over the relevant entities is indispensable to obtain the
results in question. In every step of the application process, from the immer-
sion through the derivation to the interpretation stages, mathematical entities
are invoked, and thus, the platonist insists, we are ontologically committed
to these entities.

For the nominalist, however, inferences used in all of these three contexts
(of unification, novel prediction, and explanation), despite the quantification
over mathematical objects, need not be taken as committing one to the ex-
istence of the corresponding objects. There are two reasons for this. First,
the nominalist may distinguish quantifier commitment and ontological com-
mitment, and may insist that, pace Quine, quantification is not enough for
ontological commitment (see Azzouni 2004). The fact that quantifiers can
be used without ontological import is commonly recognized. If someone as-
serts that “There was a detective who lived in 221B Baker Street in London,
and who always surprised his friend Watson by solving crimes brilliantly”,
they are not therefore committed to the existence of this detective (Sherlock
Holmes). We acknowledge very naturally, for instance, in the case of fictions,
the distinction between quantification over an object and commitment to the
existence of that object. And with this distinction in place, the nominalist
can state that despite quantifying over mathematical objects, he or she is not
committed to the existence of mathematical entities. An existence predicate
would need to be met in order for us to make ontologically committing claims
(see Azzouni 2004 and Bueno 2005, and also Colyvan 2005 for criticism of
such an approach).

Second, the nominalist may argue that, in applied mathematics, what is
crucial is to make sense of the mathematical formalism in a physically signif-
icant way. For the nominalist, according to the inferential conception, both
the immersion and the interpretation steps in the application process presup-
pose a particular physical interpretation of the mathematical formalism. This
is illustrated, for instance, in the case of Dirac’s work, by the different physical
interpretations he assigned to the same mathematical formalism. Moreover,
the nominalist can accommodate the derivation step without commitment
to the existence of mathematical entities, by cashing out the notion of con-
sequence in modal terms. That is, the nominalist would insist that A is a
logical consequence of B if, and only if, necessarily, if B then A—where the
necessity operator is defined in the usual way from a primitive notion of log-
ical consistency, and the conditional is a material one (for details, see Field
1989). For these two reasons, ontological commitment, for the nominalist, is
ultimately restricted to the physics rather than the mathematics (see Bueno
2005, and Bueno forthcoming).
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Suppose, however, that the nominalist adopts the more standard line of
accepting Quine’s identification of quantifier commitment and ontological
commitment in the case of entities that are indispensable to our best scientific
theories. In this case, the nominalist will have to rewrite the relevant scientific
theories to establish that they don’t involve commitment to mathematical ob-
jects (in the way articulated, for instance, by Field 1980). In this instance,
it should be noted that unifications, explanations, predictions, and various
inferences may be more transparent (epistemically) in the platonist version of
the theory than in the nominalist version of the theory. However, these same
unifications, explanations, and so on must also be available in the nominalist
version—if mathematics is conservative. The idea is that the so-called prag-
matic virtues of unification, explanation and the like are, according to the
view under consideration, taken to be merely results of certain inferences. If
the mathematics used to tease out these inferences is conservative, as Field
(1980) argues, then the results of these inferences could be derived in the
nominalistic version of the theory. The derivations in this case will typically
be less transparent without the mathematics, but there should be no results
that could not be obtained by nominalistic means (granting conservativeness
of the mathematical theories in question).26

5.5. Some complications and illustrations
Let us now briefly consider some complications for the account suggested
here. Addressing these complications will also give us an opportunity to dis-
cuss some additional examples that illustrate how the inferential conception
works.

First, we consider the case of composite functions. As we mentioned
previously, sometimes the applications of mathematics will be a multi-stage
process where the empirical system is modeled in one mathematical struc-
ture, which in turn may be modeled in another mathematical structure. Such
complications present little difficulty for the inferential conception of math-
ematics. We just need to ensure that the composite mappings in question
are defined (e.g., the range of the first is in the domain of the second). An
example will help illustrate the idea. In population ecology, population abun-
dance is discrete (indeed, it’s natural-number valued). But for many reasons
(including the convenience of being able to utilize the machinery of differen-
tial equations), it turns out to be useful to represent population abundance
with a real-valued function. This can be thought of as a two-stage mapping
at the interpretation stage. At the immersion stage, we map from popula-
tion abundance to the real numbers, but where the range of this mapping
is confined to a subset of the natural numbers. After derivations, we may
find solutions that are not natural numbers. Here we invoke a two-stage in-
terpretation mapping. First, we map from the continuous to the discrete by
familiar modularizations, then we map from the discrete mathematics to the
population. We note that although non-natural number values for population
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abundances have no direct physical significance, they are not uninterpretable.
We need to do little more than round off to the nearest natural number and
interpret the result as a population abundance.

But not all examples are so simple. Sometimes, we end up with results
that seem to defy obvious physical interpretation and yet we may at least
wish to entertain the idea of them being physically significant. The problem
in such cases is that the immersion mapping is not invertible and there is
no obvious two-stage process (as in the last example) to enable the obvious
interpretation. Indeed, part of the problem here is that there is no obvious in-
terpretation.27 What we require is an invertible mapping that is a conservative
extension of the mapping used at the immersion stage. That is, we require an
invertible mapping that agrees with the immersion mapping on all cases, so
provides an interpretation of all the non-problematic cases (i.e., those which
have physical interpretations under the original interpretation mapping), but
which also provides physical interpretations of the problematic cases. Typi-
cally, such conservative extensions will not be unique, but some will be more
plausible than others. Context and pragmatic considerations will come into
play in reducing the number of choices. In some cases, more than one inter-
pretation might require serious consideration. It is not clear that there is a
general account of how the construction of these conservative extensions of
existing interpretations will proceed. The details, very likely, will depend on
the context, and will require a case-by-case treatment.

But despite such difficulties, the inferential conception of applied math-
ematics does have the resources to deal with such problem cases. It does
this by (i) allowing pragmatic and contextual factors to play a role, and (ii)
by being less restrictive about the kinds of mappings that might be invoked
at the immersion and interpretation stages. In this case, we’re allowing the
construction of new interpretation mappings, so long as they are “conserva-
tive extensions” (in the sense specified above) of the existing interpretation
mapping.

6. Conclusion

For the reasons discussed above, the mapping account of the applicability
of mathematics is an interesting first step. But before it can be considered
a full and correct account of mathematics in empirical applications, much
more needs to be said about the kind of mappings and about cases where
mathematics seems to be doing more than merely representing. This is par-
ticularly so in the cases where mathematics might be thought to be providing
explanations of certain aspects of the empirical systems being modeled.

As an alternative conception that incorporates the correct structural fea-
tures found in the mapping account, we offer an inferential conception of
the application of mathematics. According to this conception, applied math-
ematics does involve crucial mappings between mathematical structures and
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the empirical set up. But crucial pragmatic and context-dependent factors
also play a central role.

A final question concerns the relationship between the mappings (in either
the mapping account or those in the inferential account) and the success of a
mathematical application. For instance, are such mappings either necessary
or sufficient for a mathematical structure to be applied fruitfully to the
world?28 Let’s take the sufficiency question first. The answer here is clearly
“no”. It is not sufficient for a successful application that there are mappings.
As we’ve alluded to in passing, some mappings will not be useful and may
even mislead. There are bad mathematical models and these too can be
represented in our framework. What’s the difference between the good models
and the bad ones—apart from the trivial difference that the good models
get things right, or are at least useful? There is no non-trivial answer to
this question. Good modeling is something of an art, and leans heavily on
contextual and pragmatic considerations.

The more interesting question is whether mappings are necessary for a
successful application of mathematics. If what we have argued in this paper
is correct, the inferential account provides one way to understand applications
of mathematics, and in particular, the successful applications. For all we have
said thus far, it is an open question whether invoking mappings is the only
way to make sense of mathematical applications. Although we suspect that it
is necessary to invoke mappings, we do not pretend to have established that
here. We are content to rest with our more modest conclusion that mappings,
as employed in the inferential conception, can provide a satisfying account
of applied mathematics.

Notes
† To contact the authors, please write to: Otávio Bueno, Department of Philosophy, Uni-

versity of Miami, Coral Gables, FL 33124-4670, U.S.A., e-mail: otaviobueno@mac.com; Mark
Colyvan, Department of Philosophy, University of Sydney, Sydney, NSW 2006, Australia,
e-mail: mcolyvan@usyd.edu.au.

1 As will become clear below, to read off facts about the physical world from a mathematical
theory, it’s crucial to provide suitable physical interpretations of the mathematical formalism.
Without such interpretations, it’s unclear how mathematical theories alone could have any
implications for the physical world—except, perhaps, regarding the cardinality of the domain
of the empirical set up. For example, if a certain mathematical theory only has finite models,
and the empirical set up has infinitely many objects, the empirical set up will be considered
mathematically impossible by the mathematical theory. Alternatively, the mathematical theory
will be considered inadequate to represent correctly the empirical domain.

2 At this point, the analogy between maps and mathematical theories may not go through
completely, since in the case of mathematical theories, there’s often more structure at the math-
ematical level than in the empirical setting. We will return to this point below.

3 Here we assume that the world comes with a particular instantiation of the relevant
objects and their structural relations (e.g. billiard balls and causal connections).

4 Pincock (2004b, pp. 150–155) does discuss the issue of whether the mappings in question
are themselves mathematical objects, but that is not the issue here. We are concerned with the
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kind of map, that is, the relationship between the target system and the mathematical model of
the system.

5 We are grateful to an anonymous referee for raising this issue.
6 Recall that a homomorphism is a mapping from one structure A (with a domain D, and

a family of relations R among the elements of D) to another structure B (with codomain D′,
and a family of relations R′ among the elements of D′) that respects the relations of A by
assigning each element of R to a corresponding element of R′. That is, a homomorphism maps
not only the objects of one domain to another; it does so in such a way that preserves certain
aspects (although typically not all) of the structures involved. An epimorphism is a surjective
homomorphism (i.e., every member of the codomain is the image of at least one member of the
domain); a monomorphism is a injective homomorphism (i.e., different members of the domain
are mapped to different members of the codomain).

7 Here and in what follows we take W to be the assumed structure and that we have somehow
dealt with the issue of how to determine what the assumed structure is.

8 To give a very simple example, consider a map that takes objects to their masses. Now
consider two objects a and b whose individual masses are each 1kg. The map in question maps
a to 1 and b to 1. Of course, we can derive in the mathematics 1 + 1 = 2, and intuitively we
want to say that this shows that the combined mass of the two objects is 2kg. But we cannot say
this without an interpretation (or inverse map) of the mathematics. We are not insisting on a
unique single inverse map, just that there be some suitable set of partial inverse maps. Without
this we cannot interpret the derived mathematical result as saying anything about the target
system. We use this simplistic example as an illustration only. There is no need for anything as
sophisticated as the mapping account (or the inferential account we will develop later in the
paper) to explain what’s going on in a straightforward application of arithmetic. After all, all
of this can be done in first-order logic. The point is simply that without an inverse mapping the
mathematics remains uninterpreted and says nothing about the empirical system it is supposed
to be representing.

9 In some cases, the non-physical solution will be the launch place of the projectile. But in
other cases, the second solution will have no physical interpretation at all (if the launch place is
on a cliff above a plain, for instance).

10 Pincock explicitly acknowledges this incompleteness (Pincock 2004b, p. 137), but feels
that a necessary first step is to provide an account of non-idealized mathematics. In this regard,
we can be seen to be extending Pincock’s account.

11 It may well be that a mathematical analysis of some representational system can offer
explanations, but even this is a significant departure from the mapping account. According to
the mapping account, mathematics is merely a representational tool, and any explanations that
drop out of the mathematics must be just standing proxy for the real physical explanation.

12 Consider an explanation for why it takes so long on foot to cover the short distance
between Campo San Angelo and Campo San Polo in the Italian city of Venice. Even a cursory
glance at the street map shows the chaotic street layout carved up by the various canals. Add
to this the fact that the map shows Campo San Angelo on one side of the Grand Canal
and Campo San Polo on the other side with very few bridges over the Grand Canal (and none
directly between Campo San Angelo and Campo San Polo). But this is not really an explanation
based on the map. It is just a case of the map making plain certain facts about the city itself.
The real explanation of the time it takes to get from Campo San Angelo to Campo San Polo
is in terms of the city’s canals, chaotic streets, and lack of bridges over the Grand Canal. The
street map does not explain—facts about the city do.

13 See Colyvan (2001a and 2007), Baker (2005), and Lyon and Colyvan (2008) for further
examples, and Ginzburg and Colyvan (2004) for more on the mathematical explanation of
population cycles.

14 It is perhaps worth mentioning that much of the motivation for Pincock (and for Leng as
well) is to defuse the indispensability argument for mathematical realism. Although we think that
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the problems with the mapping account and our suggested positive proposal have ramifications
for this debate in the philosophy of mathematics, we won’t pursue these matters here. We intend
to take up the issue elsewhere.

15 Inferences are typically understood in terms of truth-preservation among propositions.
It may appear that our usage of the term is different from this in so far as we are talking about
inferences from maps, mathematical structures and the like. But this is not right. The idea here
is that the mapping carries the inferential structure from one domain to the other. To give a
particular well-known example, two isomorphic structures are elementarily equivalent (and so
the same first-order sentences that are true in one structure are also true in the other). This
structural similarity generates an inference procedure that allows us to infer from the fact that
a certain result holds in one structure that it also holds in the other. In light of this, there is
nothing deviant about our apparently more general usage of the notion of inference.

16 Inference is also crucial in scientific representation more generally (see Suárez 2004).
17 Just as in the mapping account, we take the empirical set up to have an assumed structure.

That is, we assume that there is some natural structure of the set up in question or that an
appropriate structure can be imposed upon the set up. We do not assume that this is trivial nor
that it will be unique, although often there will be some natural candidates for the structure in
question. As we shall see in section 5.1, however, the inferential account is better equipped to
deliver a suitable assumed structure.

18 See Hughes 1997 for a related account of scientific representation in terms of denotation,
demonstration, and interpretation. The inferential conception of applied mathematics provides
an extension of Hughes’ account of scientific representation to the application of mathematics.
(For a different extension of Hughes’ proposal in the context of nanoscale research, see Bueno
2006.)

19 Even in the simple example just presented of calculating the combined mass, we might
have proceeded via a more complicated route. We might, for example, have invoked momentum
and calculated the mass by considering the relationship between mass and momentum. More-
over, in some contexts, this may well be the most efficient way to proceed, for example, if we
cannot directly determine the mass.

20 See Batterman (2002) for further details of this and other examples. The relationship
between Batterman’s asymptotic reasoning and the inferential account of applied mathematics
is a topic that we plan to explore elsewhere.

21 Indeed, the fact that in the inferential account the interpretation step is not the inverse
of the immersion step is already an acknowledgement of fluidity in the assumed structure.

22 Note that both partial isomorphism and partial homomorphism are partial functions,
and so they are not defined for every element in their domains. This point will be important for
our discussion below.

23 It might be argued that the agent does not need to solve the equations in question,
depending on the kind of model under consideration. For instance, a purely descriptive model
(one intended to describe the actual behavior of a real agent and without offering explanations
of their behavior) can be a good model even if the agent never (consciously) tries to maximize
expected utility or the like. The model works in the sense that it gets the behavior right but
that’s all. If, on the other hand, the model is supposed to not only model the agent’s behavior
but get their reasons for such behavior right, then the model better reflect the actual cognitive
processes. In this latter case, the agent would need to be a conscious expected utility maximizer.

24 For an examination of partial mappings and idealization in physics, see Bueno, French,
and Ladyman 2002, and French and Ladyman 1998.

25 See Bueno 1997 for a formal account of degrees of empirical adequacy.
26 There are some substantial issues here about the nature of explanation. Must an expla-

nation be epistemically accessible? Does mere knowledge that the appropriate connections can
be established count as an explanation? Are some explanations non-causal? Can mathematics
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provide explanations of physical phenomena that do not merely detail causal histories? (See
Colyvan 2001a, and 2007 for further discussion of issues.)

27 We have in mind here Dirac’s puzzle of the interpretation of negative energy solutions to
Dirac’s equation. As we noted above, the interpretation of these solutions led to the discovery
of the positron.

28 Our thanks go to an anonymous referee for raising this question.
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