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The Galilean turn in population ecology
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Abstract. The standard mathematical models in population ecology assume that a population’s growth
rate is a function of its environment. In this paper we investigate an alternative proposal according to
which the rate of change of the growth rate is a function of the environment and of environmental change.
We focus on the philosophical issues involved in such a fundamental shift in theoretical assumptions, as
well as on the explanations the two theories offer for some of the key data such as cyclic populations. We
also discuss the relationship between this move in population ecology and a similar move from first-order
to second-order differential equations championed by Galileo and Newton in celestial mechanics.

Introduction

Malthus’s law of population growth states that, in the absence of disturbances,
populations grow exponentially. But how do ecological ‘‘forces’’ impact on this
default state? The prevailing view in population ecology is that changes in the
environment bring about changes in the population’s growth rate. As intuitively
plausible as this view may seem, there is good reason to doubt it. Indeed, a very
interesting debate has erupted in recent years in population ecology on this very

1issue. This debate and its philosophical significance is the subject of the present
paper.

We will examine the debate initially from a somewhat mathematical and abstract
perspective and we will see striking similarities between this debate in population
ecology and a similar debate conducted in physics over 300 years ago in the move
from Aristotelian physics to Galilean physics. We will also examine some of the
evidence presented in the population ecology debate and we will see that it is
difficult to reconcile this evidence with the traditional view. Finally, we will discuss
some of the reasons for resistance to abandoning traditional theories of population
dynamics.

Malthusian law and Lotka-Volterra dynamics

The fundamental law of population ecology is Malthus’s law. It can be written a

1 See Ginzburg (1986), Ginzburg and Colyvan (2004), Turchin (2001, 2003) for some of this debate.
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rtnumber of different ways. Most commonly it is presented thus: N(t)5N e , where0

N(t) is the population size at time t, N is the initial population size and r is the0

growth rate. For our purposes, however, it will be more convenient to express this
2d
]law as a second-order differential equation: (lnN)50. The advantage of this form2dt

of the law is that it makes very clear that, according to Malthusian law, the second
derivative of the natural logarithm of the population size is zero. That is, the law
says that, in the default case, there are no net ‘‘accelerations’’.

So much for the default case. What of the influence of environmental ‘‘forces’’
such as limitations of resources, predators, or even overpopulation? The central
assumption of standard Lotka-Volterra population theory is that population size is a

1 dN2 ]]complete descriptor of the dynamic state. That is: 5f(N), where, as usual, NN dt
is the population size and f(N) is some function of the population size. This equation
tells us that the relative growth rate (average number of surviving offspring per
parent per unit of time) is a function of the population size. That is, it tells us that
changes in population abundance are brought about by changes in the growth rate of

3the population.
A couple of comments are appropriate here. First, in order to understand how

communities of populations behave, we must write down the relevant equation for
each population in the ecosystem. The function f will, typically, be different for each
population, since the abundance for one population will depend on the abundances
of other populations in the ecosystem. We thus get a very interesting dynamic

4structure arising from these interactions. The most famous of such interactions are
the predator–prey interactions described by the Lotka-Volterra equations. These
equations are simply a pair of coupled differential equations—one for predator and
one for prey. Indeed, just two-population interactions lead to very complex

5behaviour.
We also note that the traditional Lotka-Volterra view is a first-order theory—it

describes the dynamics in terms of a first-order differential equation, and the impact
of a changing environment is to affect the rate of change of the population
abundance. Put somewhat metaphorically, on the traditional view, ecological forces
bring about ‘‘velocities’’.

The inertial view of population dynamics

It is clear that changes in environment bring about changes in population abundance.

2 We use ‘Lotka-Volterra’ very generally to describe all traditional population theories—not just
predator–prey models.

3 See Gotelli (1998) for a good introduction to the basics of population ecology and Kingsland (1985)
for a very nice history of the subject.

4 See Boyce and DiPrima (1986) and Ginzburg and Golenberg (1985) for elementary mathematical
treatments of population interactions.

5 The complexity when you consider a real ecosystem is mind-boggling. See May (1974) and May
and Oster (1976) for details of some of this complexity.
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For instance, if resources dwindle, then any population depending on those re-
sources will founder. Similarly, when resources abound, populations will flourish.
The important question, however, concerns the dynamic details of how such
changes in abundance come about? Perhaps the simplest picture is that a change in
environment brings about changes in the birth rates and death rates so that, overall,
the population’s growth rate is affected by the environment. That’s the traditional
view and that seems right . . . up to a point. But what if a change in environment
affects the rate of change of the growth rate? That is, what if ecological forces bring

6about ‘‘accelerations’’? This, in essence, is the inertial view of population dy-
namics.

7Now this is a second-order theory, since the central thesis is about rates of change
of rates of change and hence employs a second-order differential

d 1 dN 1 dN8] ]] ]]equation: ( )5f(N, ). A few points to note in relation to this theory.dt N dt N dt
First, population size is not a complete descriptor of the dynamic state; we need
information about both the population size and its rate of change. Thus the
disagreement between the inertial theory and the Lotka-Volterra theory is non-
trivial. Some of the differences will be discussed in section 5, but for now, we
mention one major difference: the second-order, or inertial, character of this theory
gives rise to a time lag. According to the inertial view, the rate of change of the
population abundance at any time depends on both the population abundance and its
rate of change. The fact that this results in a time lag is easiest to see in the discrete

9presentation of the theory. The traditional theory, in discrete form, has it that the
population abundance N at some time t 11 is a function of the abundance at the
previous time step t: N 5 N F(N ). On the inertial view, the the populationt11 t t

abundance at some time t11 is a function of the abundance at both t and t21: Nt11

5 N G(N , N ). The dependence of the population abundance at t11 on Nt t t21 t21

constitutes a time lag that has no counterpart in the traditional Lotka-Volterra theory.
Second, it is interesting to note that the first-order (Lotka-Volterra) equation drops

6 The reason for the name will become apparent shortly, along with the other physical analogies
used—‘velocity’, ‘acceleration’, ‘force’ and the like. It should be mentioned, though, that the use of the
word ‘inertia’ for internal explanations for population cycles (as opposed to external predator–prey
explanations) is not uncommon in the literature. It appears, for example, in a chapter heading of the
classic book (Wynne-Edwards 1986) as well as throughout the work of one of the present authors
(Ginzburg).

7 Second-order theories of population dynamics were first proposed independently by Clark (1971),
Ginzburg (1972), and later by Yee (1980). More sophisticated presentations can be found in Ginzburg
(1986), Ginzburg and Colyvan (2004).

8 We present the theory here in its simplest form, where f is a function of population abundance and
the per capita growth rate. This is in order to stress the points of contact with, and departures from, the
traditional theory. In the theory’s most general form, f is a function of the environment of the population
(of which population abundance is part) and the per capita change in the environment (of which per capita
growth rate is part). In section 6 of this paper we revert to the more general form of the theory, since the
topic of section 6 is most readily seen in this setting. For now, however, we stick with the simpler form.

9 And after all, the use of differential equations in population dynamics is clearly an idealisation;
populations are discrete and so the appropriate mathematical machinery is really difference equations.
Differential equations, however, continue to be used, mainly for their convenience.



404

out as a special case of the inertial view. This is not unlike the way in which
10Aristotelian physics is a special case of Newtonian physics when friction is high.

The analogue of friction in the ecological case is space (or, more generally,
resource) constraints. The idea being that when population density is considered (as
in the standard first-order logistic equation) these resource constraints act as a kind

11of friction in the second-order theory. When resource constraints are extreme, the
growth rate is retarded to such an extent that a ‘‘force’’ is required to sustain the
growth rate of the population. Since such severe space or resource constraints are
not uncommon, many (but not all) populations behave like first-order systems. This
fact is easily accommodated by the inertial theory.

Finally, we point out that this inertial approach allows for much more complex
dynamics without requiring population interactions. In effect, this move from a
first-order to a second-order model requires more by way of initial conditions but is
able to accommodate a greater variety of phenomena. Now there would be little
motivation for such a move if the phenomena in question were never observed—the
first-order model would thus suffice. In section 5 we will look at some of the crucial
phenomena and argue that the inertial view does a better job of accounting for them.
For now, we merely wish to draw attention to the important trick of increasing
dimensions to produce a more flexible theory. This trick is very common in physics.
The idea, in effect, is to delimit the range of questions your theory can address and

12pass the rest off as uninteresting facts about initial conditions. In the next section
we pursue this issue. We discuss a very similar move in physics around the time of
Galileo.

Aristotle and Galileo

According to Aristotelian mechanics, the default state is the rest state. That is, a
body remains at rest unless acted upon by a force. Moreover, the result of a force
acting upon a body is a velocity. This view prevailed for around 2000 years because
it was (and is) intuitively plausible and it agreed very well with everyday observa-
tions. After all, almost all observed moving bodies slow down and eventually stop
unless a force sustains them. But there are a few anomalous cases: most notably, the
planets. Planets appear to move continuously and without any obvious force
propelling them. How is this possible on the Aristotelian view?

According to the Aristotelian view, there must be some force propelling the
planets. Let’s suppose that some Aristotelian physicist were to preempt Newton and
suggest that gravity was the force at work here. More specifically, let’s suppose that

10 For example, in a viscous liquid, particles behave as though governed by Aristotelian physics:
forces result in velocities and particles stop almost immediately unless acted upon by a force.

11 This issue is discussed further in Ginzburg (1986).
12 To solve second-order differential equations you require more by way of initial conditions than a

first-order differential equation. The former requires two sets of initial conditions (or boundary
conditions), while the latter requires only one.
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the imaginary physicist suggested that the result of gravitational force is a velocity,
so the gravitational attraction between the planet and the sun resulted in the velocity
of the planet circling the sun (or perhaps orbiting the combined centre of mass). As it
turns out, this is impossible. If we think of gravitation as a force that results in a
first-order quantity, like a velocity, there can be no orbiting planets—all planets
would simply hurtle directly towards the sun or spiral into the sun (depending on
initial conditions). To get an orbiting planet, we require an extra force. Moreover,
this extra force must be constantly changing in direction; we require something like
‘‘the hand of God’’ to keep planets orbiting the sun.

The reason for this is a fairly straightforward consequence of the mathematics. To
get trajectories as complex as cycles, we require (at least) second-order differential

13equations. If gravitation is a force that results in a velocity, the resulting differen-
14tial equation is only first order. Now this presents a huge problem for anyone

proposing a broadly Aristotelian theory of planetary orbits using gravity as the
mechanism. The Newtonian theory of gravitation, on the other hand, is the simplest
theory that is capable of explaining planetary orbits, without appeal to additional
forces. The reason is again straightforward: Newton recognised that forces result in
accelerations, not velocities, the resulting mathematical description of the two-body
problem is a second-order differential equation and thus it admits periodic solutions

15such as ellipses.
Now there is no question of the superiority of Newtonian theory over Aristotelian

theory. What is somewhat surprising then is that the same move from a first-order
theory to a second-order theory in population dynamics is receiving a great deal of
resistance. Before we examine that debate, let’s return to the inertial model of
population growth and briefly consider some of the evidence for it.

Evidence for the inertial view

The first piece of evidence for the inertial view is population cycles. These are
populations whose abundance oscillates in a periodic way over time. On the
standard, first-order account of population growth, such periodic behaviour must be
the result of external ecological forces. These forces might take many forms, but the
most common account is in terms of predator–prey interactions. According to this
story, whenever we find periodic behaviour there must be (at least) two species
interacting in a predator–prey relationship. The idea being that the predator can
consume the prey until numbers of the prey decline to such an extent that the
predators find it difficult to find prey. The predators then start to starve and thus
decline in number. The decline in the predator population allows for a revival in
prey numbers, which in turn results in a revival in predator numbers, and so on.

13 That is, equations involving second derivatives of the displacement function.
14 That is, the equation involves only first derivatives of the displacement function.
15 Of course, it admits other solutions as well, such as paraboli, straight lines and spirals.
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Such a system is described by the standard Lotka-Volterra predator–prey
16equations.

According to the inertial model we are proposing here, however, population
cycles are possible without species interaction. The reason for this is that the theory
is second order and thus allows for periodic trajectories—these trajectories are
driven by an internal mechanism, to be discussed in the next section. Now since the
standard Lotka-Volterra model requires species interaction for cycles, if we were to
find a cycling population that was not part of a predator–prey pair, this would count
for the inertial view and against the Lotka-Volterra view. Although there are many
such populations it is not so easy to dismiss the Lotka-Volterra view. In cases of
single-species cycles, the species in question must be using some resources, such as
grasses, and these resources can be considered the prey. Moreover, this move does
not seem in any way ad hoc because it is clear that overexploitation–underexpoita-
tion cycles should also result with, say, grasses and kangaroos. The existence of
(apparently) single-species population cycles is thus not decisive.

The best evidence for the inertial view comes from considering a starving
population. Let’s assume that there is no food for a given population. Some
organisms respond to the absence of food by shutting down their various metabolic
functions. They do not die in the absence of energetic input but rather ‘‘sleep’’ until
food is available again. Simple unicellular organisms such as E. coli do this. Most
other organisms, including mammals and birds, die in the absence of food. It is this
death process we wish to consider more closely.

In the 1980s Larry Slobodkin conducted some very interesting experiments on
water from the Hudson River. He used the freshwater polyps, brown and green
hydra, to determine the quality of the water from various sites in the Hudson system.
In particular, he placed five of these animals in a synthetic pond of water from the
Hudson. In all, there were over 100 such ponds with water from 51 different
locations. He fed the hydra for three weeks prior to the experiment and then stopped
feeding them, with the number of individuals in each pond being recorded on a
weekly basis.

The experiment was originally conceived of and designed to study how quickly
the hydra died in the different Hudson water samples. It turns out, however, that this
experiment also tells us something rather important about population dynamics.
Since all the hydra populations were without food during the experiment, we have a
study of the way in which populations die in the absence of energetic input.
According to accepted wisdom in population dynamics, the hydra populations
should have died exponentially. That is, if we graph the logarithm of the number of
individuals in a given population versus time, we should end up with a straight line
with negative slope. What the experiments showed, however, was that the hydra
died with acceleration (see Figure 1). That is, the graph of the logarithm of the
number of individuals in a given population versus time was a parabola—the shape
of the flight of a projectile falling under the influence of gravity.

16 These equations admit periodic solutions, since coupled first-order equations can be thought of as a
single second-order differential equation.
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Figure 1. Figure 1 summarises the results of a starvation experiment conducted by Slobodkin on brown
and green hydra (Akçakaya et al. 1988). The original purpose of this experiment was to assess the water
quality of samples from 51 different sites on the Hudson River. However, the results also demonstrate
that the decline of populations under starvation is accelerating rather than constant. Two replicates were
run using water from each site, for both brown and green hydra, resulting in 102 populations tested for
each. Each population started with 5 individuals and the population size was recorded once a week. A
geometric average was taken for the population sizes of the two replicates for each location. The data
from five of the 204 total populations were discarded because of insufficient data points (less than 2
non-zero points). For this figure the population data was combined into clusters, with each cluster based
on the longevity of the included populations. The natural log of the population sizes is shown; the original
data in arithmetic scale can be found in Akçakaya et al. (1988). Since the natural log of 0 does not exist,
we added 1 to the population size in order to be able to show the decline to zero abundance.

Now the length of time it took for each of the different populations to die was
different, depending on the relevant population’s initial growth rate—just as a rock
thrown (with the same force) travels further, if thrown at a trajectory of 45 degrees
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as opposed to, say, a trajectory of 10 degrees. Also the brown hydra died more
quickly than the green, since the green hydra have extra energy input from their
symbiosis with green algae (that gives them their colour). The important point, for
present purposes, is that all the populations exhibited accelerated death. This is a
telling point against the traditional model of population growth. On the other hand,
this is exactly what you would expect on the second-order model we’re proposing.
For if organisms continue to metabolise energy in the absence of food, their internal
energy level will decline and their rate of reproduction will follow this decline. Thus
we expect the total population abundance to decline with an accelerated, not a
constant, exponential death rate. This experiment, though not decisive—no single
experiment ever is—presents a serious problem for the standard model of population

17growth and a telling point in favour of the second-order, inertial proposal.

The maternal effect

The essence of the inertial view is that there is a lag in population growth: the rate of
change of the growth rate is a function of the environment and of environmental

18change. Or, put another way, the rate of change of the growth rate is a function of
the environment and of previous environments (the environments of previous
generations). If this view is correct, the importance of previous environments has not
been appreciated thus far in population dynamics. But how can a population respond
to past environments, and why should a population respond to the way things were
rather than simply responding to how things are now? We thus arrive at the first
stumbling block for the inertial view. The problem is that thus far we have been
concerned with the mathematics of the model—arguing for a second-order model
over a first-order model—without regard for how the mathematical model is
interpreted in terms of the biological systems being studied. In short, a second-order
model is all well and good, but given that this implies a time lag, what is the causal
mechanism that underwrites this lag?

This is a very good question, and it was largely due to the lack of a convincing
answer to this question that this theory was given very little attention in the
ecological literature until the 1990s. Before we discuss our answer to this question,
let us emphasize the importance of providing an answer. After all, you might be
tempted to simply dismiss the question and trust the mathematics, wherever it
should lead. Indeed, this is very close to what happened in the analogous physics
story.Why should position depend on both velocity and previous velocities. ‘‘That’s
just the way things are’’, is the answer. What is the mechanism for two bodies

17 See Akçakaya et al. (1988) for further details of the relevance of the Slobodkin experiments to the
debate over first-order versus second-order models of population dynamics. d 1 dN18 ] ]]We discuss the more general form of the theory in this section (recall footnote 8): ( )51 dE dt N dt
]]f(E, ). Here E is the quality of the environment (which includes the abundance of the population in
N dt

question).
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remote from another to have gravitational influence on one another? Again, that’s
just the way things are. Why not answer the ecological question along similar lines?

This is a very tempting response for the more mathematically oriented scientist,
but to advance such a response is, we believe, to seriously misunderstand the nature
of biology and its relationship to physics. Physics, by its very nature is the study of
the fundamental laws of nature. We all know that explanation must end somewhere
and it seems that physics is the appropriate place for it to end. So while we may
accept that some basic laws do not admit of further explanation or justification, any

19such laws should, we suggest, be reserved for physics.
Let us be clear about what we are not saying. We are not suggesting a commit-

ment to a foundational view of knowledge. On the contrary, we both reject any such
foundational assumptions. Our point, although most readily put in foundationalist
terms, can be recast in coherentist terms: physics is the more central discipline and
so, typically, scientific facts from other scientific disciplines must either reduce to,
or supervene upon, physical facts. So, while it is permissible to have primitive
physical laws that are unexplained, this is less acceptable in other scientific
disciplines. We also wish to point out that we are not suggesting that the relevant
reductions can be performed or that the details of the relevant supervenience
relations can be spelled out. We are simply suggesting that it would be most
implausible for biological facts, for example, not to at least supervene upon physical

20facts. To deny this is to give up on physicalism.
All we are saying then is that to accept the inertial view, without further ado is

effectively to give up on the search for a physical or causal mechanism for the time
lag we drew attention to above. Such faith in the mathematics might not be out of
place in physics where explanation is nearing an end, but in biology and ecology it is
not unreasonable to ask after the reason for the lag. Even a nod in the direction of the
mechanism and a promisory note is preferable to no story at all.

Fortunately there is a story to be told here. The primary reason for inertia in
population growth, we believe, is the maternal effect. This is the phenomenon of
‘‘quality’’ being transferred from mother to daughter. The idea being that a well
nourished and healthy mother produces not only more offspring but also healthier
offspring. So, an individual from a healthy mother experiencing a deteriorating
environment will do better and be able to continue reproducing longer than
individuals in the same environment, not blessed with a healthy mother. Similarly,
an individual from an unhealthy mother will do poorly despite an improving
environment. This means that the population abundance at any time is the product of

19 Issues concerning the differences in time scales may also be relevant here. Physics is very often
concerned with instantaneous change, where the time scale is arbitrarily small; in population ecology, on
the other hand, working with generation time seems more natural. Perhaps, as a result of this, in ecology
there is a tendency to think in terms of cause and effect. Moreover, in ecology there is time to isolate the
causes. This is not always the case in physics.

20 This is not an argument, of course, just a commitment to physicalism.



410

both the current environment and, to some extent, the environment of the previous
21generation.

The maternal-effect hypothesis provides an elegant answer to the question of the
mechanism for the time lags involved in the inertial model of population growth.
This, as we’ve already suggested, loomed as a serious problem for the inertial view.
There is, however, another, more general concern about the inertial model. This
concern involves the role of mathematics in theory choice and we discuss this issue
in the next section.

The role of mathematics in ecology

Now you might think that in our defence of the inertial model of population growth
we have put the mathematical cart before the empirical horse. After all, we’ve
followed the mathematics of the second-order model as far as it would take us,
driven primarily by analogies in physics, but it was seemingly only an afterthought
to propose an ecologically-based mechanism for the theory (in the form of the
maternal effect hypothesis). Surely this is the wrong way to go about developing a
theory. If an ecological theory is not motivated by ecological considerations, it
would seem to be resting on shaky ground. Moreover, if an ecological theory is
motivated by mathematical considerations it would seem to be lacking motivation
altogether.

This is a very interesting point and one that raises all sorts of issues about the role
mathematics plays in empirical theories. Although to discuss these issues in detail

22would take us too far afield we do need to say something by way of appeasing
those sympathetic to the view that ecological theories should be motivated by
ecological considerations, not mathematical considerations. The first thing to note is
that there are many episodes in the history of science where the mathematics seemed

23to lead the way. One such case was Maxwell’s prediction of electromagnetic
radiation. This prediction was a direct result (or so it would seem) of Maxwell being
led by the similarities between the mathematical formalism of electromagnetic
theory and the mathematical formalism of Newtonian gravitational theory. Our first
response then is that if we are guilty of having the mathematical cart before the

24empirical horse, we are not alone. Although this may not seem like an entirely
satisfying response, there is something to it. The mystery of the applicability of
mathematics has long been a puzzle for physicists, mathematicians and philosophers
of mathematics; what we have here is simply one more instance of it.

There is another response though: the ‘‘proof is in the pudding’’ response. Now

21 See Rossiter (1996) for a nice survey of the maternal effect and Ginzburg (1998), Ginzburg and
Taneyhill (1994) for details of its importance as a cause of inertia in population dynamics.

22 See Colyvan (2001, June-2001), Steiner (1998), Wigner (1960) for more on this very interesting
issue.

23 See, for example, Steiner (1998) for details of many such episodes in physics.
24 Indeed, we are in pretty good company.
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we admit that we were led to consider the inertial model of population growth by
considering the analogy between population cycles and planetary orbits, and
considering the mathematical formalism of each. That was not the end of the story
though. Ultimately, the theory has to stand on its own legs, proving itself against its
competitors on the usual fronts of empirical adequacy, elegance, consistency and so
forth. We claim that the inertial theory performs very well on these fronts; how we
came to this theory should have little to do with the theory’s acceptance or rejection.

25The proof, as we say, is in the pudding.
A related issue concerns the interpretation of the second derivative in the

ecological case. Although, second derivatives are well understood mathematically,
it might be argued that the ecological interpretation of d /dt(1 /N dN /dt) is puzzling.
Moreover, so the objection goes, we understand what the second derivative is in the

2 2analogous physical case; d s /dt is simply acceleration. But since we don’t really
understand what d /dt(1 /N dN /dt) is, we have no reason to attach physical signifi-
cance to the second derivative in the ecological case. This is an interesting objection
but ultimately misguided. First, consider the case of acceleration in physics. Sure we

2 2have a convenient and familiar word for d s /dt , but this is because it is important
and it is needed. Its physical significance has little to do with whether there is a word

26for it or not, or whether we have an intuitive understanding of it or not. Indeed, the
thought that we understand acceleration in terms other than as ‘‘a rate of change of a
rate of change of displacement’’ says more about the familiarity of the concept than

27its physical significance.
Now to the second derivative in ecology. We’ve deliberately used the word

‘acceleration’ for the concept in question so as to both stress the analogy with the
physics case and to give a convenient (and familiar) name to what we take to be a
significant ecological concept. Ultimately, the second derivative in ecology, like
elsewhere, just concerns the rate of change of the rate of change of some quantity.
Now that might be clumsy to say but we take it that it’s perfectly intelligible.

Finally, let us briefly consider the legitimacy of the move to higher dimensions to
gain flexibility in a theory. We’ve already pointed out that this is a device often used

25 This response can be fleshed out further if we consider the distinction between reasons for
entertaining an hypothesis and reasons for accepting it. It should not count against an hypothesis that it
was initially the result of a drug-induced dream, say. So long as it stands up well to empirical tests and
other desiderata of good theories, surely that’s all that counts. Now it is clear that drug-induced dreams
are generally not good hypotheses generators but mathematical analogies, it would seem, are. Why this is
so (if it is so) is simply a restatement of the problem of the mystery of the applicability of mathematics.
This is a problem, we believe, in need of serious attention but it is not, as we’ve already suggested, a
special problem for us here. In any case, the origin of an hypothesis is not a reason for accepting or
rejecting it. Hypothesis generation and hypothesis acceptance are two quite distinct exercises, and it
would be counterproductive to hold hypothesis generation to the more rigourous standards of hypothesis
acceptance.

26 Consider the concept of intrinsic curvature of space-time manifolds in general relativity. It’s not
clear that anyone has an intuitive (i.e. non-mathematical) understanding of this concept, but there is no
denying its significance.

27 No doubt, when Newton first introduced the concept of inertia to physics, it had no intuitive
reading.
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by physicists. We’ve seen how Newton increased the order of the differential
equation from one to two so as to get gravitational theory to work; Einstein treated
time as a space-like dimension to (in effect) raise the dimension of the relevant
manifold from three to four; and in the Hilbert-space formalism of quantum
mechanics, finite-dimensional matrices are generalised to infinite-dimensional
operators. Such moves are always open when a theory is unable to account for all the
known phenomena. Once put like this, it does seem like an ad hoc trick, despite its
illustrious history. The question, then, is: when is this trick legitimate and when is it
not? And more pertinent to the point of the present discussion, is the move from the
Lotka-Volterra theory to the inertial theory of population growth legitimate or not?

We don’t believe that there is a general answer to the former question; we must
consider each case of increasing the dimension of a theory on its own merits. As for
the latter question, we agree that, all other things being equal, we should prefer
theories with lower degrees of freedom. The question really then is whether the
inertial theory is the simplest theory that can account for the data. This issue clearly
requires further investigation, but we hope that in this paper we have said enough to
conclude that the inertial theory of population growth is a good contender to the
Lotka-Volterra theory. Only time will tell which is ultimately the preferred theory.
And then, and only then, will we know whether the move to a second-order model
was justified.

Closing remarks

There are at least two interesting philosophical lessons to be gleaned from this case
study. First, we’ve seen that the role of mathematics may be quite different in
different scientific theories. Even though the move from first- to second-order
theories in physics was relatively unproblematic, there has been much resistance to
this move in ecology. We have suggested that this resistance in ecology was to some
extent justified in the absence of a mechanism explaining the time lag. We argued
that accepting laws with brute-fact relationships like action at a distance and
conservation principles are often appropriate in physics, but in many other sciences
like biology and ecology, one would prefer causal explanations. Science may not be
the homogeneous body of knowledge with uniform methodology that it is often

28taken to be. Ecology and biology might be quite different from physics with
respect to what counts as a satisfying explanation.

Second, this case sheds some light on a type of simplicity that seems rather
important in many scientific contexts: the simplicity of lower-dimensional theories.
At least some of the resistance to the second-order inertial view is due to the fact that
this theory has one more degree of freedom than the competing Lotka-Volterra,
first-order theory. The problem of spelling out what simplicity in science amounts to
is notoriously difficult, but in this case it is rather straight forward: all other things

28 See Cartwright (1999) for more on this issue.
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29being equal, prefer the theory with fewer degrees of freedom. Obviously, we think
that the move to the second-order theory is, in this case, justified, but we resist the
move to a third-order theory, for instance. Why? Because we too agree that one
ought not multiply dimensions beyond necessity.

We should mention some very interesting recent work on simplicity in the
philosophy of science by Forster and Sober (1994). This work invokes a theorem by
Akaike (1973) to shed light on the notion of simplicity involved in fitting the

30simplest curve to data. In particular, Akaike’s theorem tells us about the trade-off
between fit and simplicity in curve fitting problems: it provides a way of balancing
the competing goals of fewer parameters, and fit with the data. It turns out that
simplicity is important for the predictive power of the model.

There are clearly some points of contact between the simplicity we have in
mind—the simplicity of lower dimensional models—and the simplicity addressed
by Forster and Sober—the simplicity of fewer parameters. There is, however, at
least one major point of dissimilarity; in the application of Akaike’s theorem, the
dimensionality of the model is fixed in advance. But the dimensionality of the model
is precisely the issue that we’re interested in. Moreover, there is no obvious way to
construe the choice of dimension as a curve-fitting problem, so the Akaike

31framework does not seem applicable here. This may mean that the kind of
simplicity that Forster and Sober discuss is just one among many. This would not be
at all surprising, but the matter certainly deserves further attention. In particular, the
relationship between the simplicity of lower dimensions and the simplicity of fewer

32parameters is an intriguing issue that we hope to pursue elsewhere.
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