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Why were you initially drawn to the foundations of math-
ematics and/or the philosophy of mathematics?

Like many philosophers of mathematics, I suspect, I started out
in mathematics and drifted into philosophy. My undergraduate
work was mostly in pure mathematics. I loved (and still love) al-
gebra, functional analysis, topology, and complex analysis. While
immersed in the many elegant proofs in these areas, I began won-
dering about the nature of proof and mathematical truth. I thus
became interested in, and began studying, logic and philosophy as
complements to my mathematics major. I completed a Bachelor
of Science with honours in pure mathematics, with a thesis on
the Dirichlet problem in potential theory. By the time I finished
honours, I was fascinated by the many philosophical issues arising
in mathematics. Some of those that attracted my attention were:
(1) the existence or non-existence of mathematical objects, (2) the
applications of mathematics in empirical science and (3) the ques-
tion of proof and the status of axioms such as the axiom of choice.
Around this time I read Hartry Field’s Science without Numbers
(1980) and Penelope Maddy’s paper ‘Indispensability and Prac-
tice’ (1992). After reading these two pieces, there was no turning
back. I switched from mathematics to philosophy. I started a PhD
in the philosophy of mathematics at the Australian National Uni-
versity, where I was very fortunate to have Jack Smart as my
supervisor. Jack’s genuine, on-going fascination with science and
mathematics, and his passion for learning has been an inspiration
to me. Indeed, not long after starting my graduate work, Jack ex-
pressed interest in supervising me because he had always wanted
to work on the philosophy of mathematics and then in his retire-
ment, he finally had the time to come up to speed in this area. We
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thus worked though the contemporary literature—Maddy (1990),
Field (1980, 1989) etc.—together. It was a wonderful experience
and I am very pleased to say that Jack too has written up some
of his thoughts on the philosophy of mathematics (Smart manu-
script).

During my time as a graduate student I was fortunate enough
to meet, and spend time with, Hartry Field, Penelope Maddy, and
Mike Resnik. These three, in particular, have been enormously in-
fluential on my intellectual development. They set very high stan-
dards in their own work, providing shining examples of how good
philosophy should be done and how such philosophy can genuinely
advance debates in the philosophy of mathematics (and in math-
ematics itself). They were also very generous with their time and
ideas. Mike Resnik, for instance, effectively steered me towards my
thesis topic: a defence of the Quine-Putnam indispensability argu-
ment. (This is an argument that we ought to take mathematical
objects to exist because of the indispensable applications of math-
ematics in empirical science (Quine 1981, Putnam 1979, Colyvan
2001).) Initially I thought Mike was crazy. A whole thesis on one
argument! Surely, I thought, I’d need to do more than that. But
Mike’s advice was right on the money. Not only did he direct me
to a manageable thesis topic, he directed me to a topic of consid-
erable contemporary signigicance. Although my research interests
have since broadened, I continue to work on the indispensability
argument and other topics in the philosophy of mathematics. This
is in part a result of the ongoing intellectual engagement with the
likes of Hartry Field, Penelope Maddy, Mike Resnik, Jack Smart,
and many others (indeed, many of the philosophers interviewed
for this volume).

What examples from your work (or the work of others)
illustrate the use of mathematics for philosophy?

Where do I begin? Mathematical methods are useful almost every-
where in philosophy. There are many obvious examples in the more
technical areas of philosophy, such as philosophy of science, phi-
losophy of mathematics, philosophical logic, decision theory, and
formal epistemology. But there are also many less-technical areas
where mathematics has been usefully employed to shed light on
philosophical problems. Let me give an example of the latter from
a paper I wrote with Jay Garfield and Graham Priest (Colyvan
et al. 2005) on fine tuning arguments for the existence of an in-
telligent designer. (Also see some of Elliott Sober’s terrific work
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on more general design arguments, for example, Sober 2002. On a
related philosophy of religion theme, see Alan Hajek’s (2003) fas-
cinating discussion of Pascal’s Wager—especially the discussion of
the non-standard analysis angle.)

Design arguments draw attention to some feature of the world
and suggest that the feature in question would be unlikely with-
out the intervention of an intelligent designer. Various features
of the world have been put forward as the focus of design argu-
ments: the mechanical clock-like universe and complex biological
structures. Biology was an especially popular focus for design ar-
guments before Darwin’s time (although sadly almost 150 years
after the publication of The Origin of Species such arguments are
still with us). Recently a physics-based version of the design argu-
ment has reared its head. This latter argument is usually known as
the fine-tuning argument. Here the special feature of the universe
that allegedly is in need of explanation is the existence of carbon-
based life. It is noted that the universes seems to be fine tuned for
the emergence of such life: had things been just slightly different,
carbon-based life could not have evolved. For example, (for rea-
sons that need not concern us here) had the fine-structure constant
been even a few percent from its actual value, there would be no
carbon molecules and hence there would be no carbon-based life.
So, the argument continues, the universe as we find it (i.e. with
carbon-based life) is improbable and this improbable state of af-
fairs requires an explanation. The final move in the argument is to
invoke an intelligent designer to provide the required explanation.
This designer is presumably predisposed to value carbon-based life
and is usually taken to be something like the Judeo-Christian god.
Putting aside the obvious dubiousness of the last move, consider
the argument up to the conclusion that an intelligent designer ex-
ists. Almost every premise and inference of even this part of the
argument can be challenged, but one rather interesting mathemat-
ical challenge is right at the start, at the move from the universe
being fine tuned to the universe being improbable.

Let’s look at this move a little more closely. Presumably the
idea is that the fine-structure constant, say, could have taken a
value from a large range of real numbers and yet only a small sub-
interval in this range will permit carbon-based life. But before we
can move to assigning even qualitative probabilities, we need to
know something about the probability distribution in question. Of
course, if the proponents of this argument are supposing that the
fine-structure constant could have taken any real number as its
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value and all such values are equally likely, then the argument is
fatally flawed. There simply can be no uniform distribution over
an unbounded set like the reals (or even the positive reals). So how
do we get to the improbability claim? The claim must be that the
distribution in question is not uniform or that it has compact
support. But that’s not enough. We also require that the shape
of the distribution is such that it delivers a low probability to the
carbon-based-life-permitting interval. Typically, none of this is ar-
gued for by proponents of the fine-tuning argument. Indeed, some
of the discussions in this area are mathematically very naive, bog-
ging down in extended and misguided treatments of how to give
frequency interpretations of the probabilities in question, rather
than adopting the standard measure-theoretic approach.

These mathematical reflections on the problem don’t provide
a knock-down argument against all fine tuning arguments, but
they do block many of the less careful presentations. These re-
flections also make it clear what proponents of these arguments
need to demonstrate. I can’t help stressing how difficult their task
is though. They need to argue that the distribution in question
has exactly the right shape to ensure that the carbon-based-life-
permitting interval has low (but non-zero) probability, and that
this probability is higher under the assumption of an intelligent
designer. Moreover, they need to show that the intelligent de-
signer is the best explanation of the presence of carbon-based life
in the universe. The latter, of course, is highly non-trivial. To take
one often-overlooked hypothesis that strikes me as very plausible:
the distribution in question is such that it has most of its den-
sity over the carbon-based-life-permitting interval. Given that we
know next to nothing about this distribution (hence the afore-
mentioned assumption of the distribution being uniform in many
naive presentations of the fine-tuning argument), we can use the
evidence that there is carbon-based life to support my suggested
alternative hypothesis about the shape of the distribution. A little
bit of mathematics and these design arguments start to crumble.

What is the proper role of philosophy of mathematics in re-
lation to logic, foundations of mathematics, the traditional
core areas of mathematics, and science?

My view about the relationship between science and philosophy
is a naturalistic one, where I take the role of philosophy as that
of helping to understand science from within the scientific enter-
prise. This does not, for example, mean that philosophy is merely
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a powerless public servant, rubber stamping all and only the pro-
nouncements of our current best science. Philosophy has an im-
portant role here, providing details of a plausible epistemology (for
example, by providing an account of scientific confirmation), shed-
ding light on metaphysical issues (for example, about the nature
of causation), and critiquing science and subjecting it to scrutiny
(for example, by examining the philosophical underpinnings of the
statistical methods used in various branches of science). There is
nothing new in any of this. This view of philosophy’s relationship
to science goes back a long way (at least to Russell) and was made
famous and elegantly articulated by W.V.0O. Quine in a number
of places (for example, in Quine 1981).

How this naturalistic attitude plays out in relation to mathe-
matics and logic is a little more complicated, but the basic idea
is the same. The philosophical enterprise in relation to logic and
mathematics is to provide a satisfying epistemology and, amongst
other things, to make sense of current debates about the appro-
priate logic and new candidate axioms for set theory. Penelope
Maddy (1997), in particular, has done some important work on
the 20" Century debates over the axioms of ZFC set theory and
the contemporary debate over new axioms. She takes a natural-
istic approach and, in passing, shows how such an approach can
genuinely advance both philosophy and mathematics.

What do you consider the most neglected topics and/or
contributions in late 20th century philosophy of mathemat-
ics?

Let me start with a topic that was neglected but has since be-
come one of the main foci of contemporary philosophy of math-
ematics: the applications of mathematics. The original motiva-
tion for much of the work on the applications of mathematics
was the Quine-Putnam Indispensability Argument. Hartry Field,
Penelope Maddy, and other critics of this argument were led to
examine, in detail, specific applications of mathematics in science.
This worked has helped focus the debate about the indispensabil-
ity argument, but it has also been interesting in its own right. Ir-
respective of your metaphysical leanings, an important fact about
mathematics is that it finds widespread and diverse applications
in science: from group theory in fundamental particle physics, to
differential equations in population ecology. The recent work on
applications, begun by Field (1980, 1989) and Maddy (1997), and,
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in a different context, by Steiner (1998) and Wigner (1960), has
resulted in what might even be considered a new area—the phi-
losophy of applied mathematics. This area has been very fruitful
and has helped shift, or at least broaden, the focus of the phi-
losophy of mathematics from the more traditional, foundational
questions about pure mathematics. These traditional questions
are, of course, still interesting and deserving of attention, but fo-
cusing on pure mathematics and its foundations, in isolation, I
think, is to miss an important part of the story. Pure mathemat-
ics finds applications elsewhere in mathematics and in science.
And as T have argued elsewhere (Colyvan 2001a), philosophers
of both realist and anti-realist stripes need an account of applied
mathematics, so this no place for passing the buck on the required
philosophical work. Happily, this work on applications is now well
and truly under way and forms a significant thread in contempo-
rary philosophy of mathematics. I should add that this work on
applications also has interesting connections with related work in
the philosophy of science on idealizations in scientific models.
Now to one of the neglected topics in the philosophy of math-
ematics. The old debate about the correct logic for mathematics
never moved past intuitionism versus classical logic, but in the
context of inconsistent mathematical theories there is the issue of
paraconsistent logic versus the rest. A paraconsistent logic is one
in which ex contradictione quodlibet (or “explosion”) fails. That
is, unlike classical logic, a paraconsistent logic does not allow the
derivation of an arbitrary sentence from an arbitrary contradic-
tion. Such logics have important applications, such as in modeling
inconsistent agents and as insurance in large, possibly inconsis-
tent, data sets (so that the contradictions don’t spread and triv-
ialise the data set). But there are also important applications in
the philosophy of mathematics. Let me briefly mention a couple.
There have been times when we’'ve been forced to work with
inconsistent mathematical theories (for example, naive set theory
and, arguably, the early calculus). What is more, we were forced
to work with these theories at times when they were known to be
inconsistent. The first point to note is that using classical logic and
taking an explicit statement of the contradiction as an assumption,
a proof of any mathematical sentence can be derived in a few
lines. But, perhaps unsurprisingly, such cheap proofs were not
taken to be legitimate. What does this suggest about the logic
of mathematics? Is it paraconsistent? Or is the logic classical but
with further pragmatic constraints imposed to avoid the cheap
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proofs just mentioned? It is also interesting to note that the two
contradictory theories I just mentioned (the early calculus and
naive set theory) were major mathematical theories with wide-
ranging applications. This gives rise to another question: how is it
that an inconsistent theory can be successful in its applications?

Another application of paraconsistent logic in the philosophy of
mathematics is to model unashamedly inconsistent theories, such
as those discussed by Bob Meyer and Chris Mortensen (1984),
Chris Mortensen (1995), and Graham Priest (1997, 2000). Such
theories have a number of virtues: they are non-trivial (in the
sense that despite their inconsistency, not every sentence is prov-
able), and they do not need to be incomplete. (After all, Godel’s
incompleteness theorems, show that we must choose between con-
sistency and completeness.) Even if we prefer our mathematics to
be consistent (and we can find reasons to suppose that the theo-
ries in question are in fact consistent), inconsistent mathematics
theories still have considerable interest. For example, the mere
fact that inconsistent mathematical theories can find wide-spread
applications in empirical science suggests that any philosophical
account of the applications of mathematics in science had better
not lean too heavily on consistency to do the work. It would seem
that consistency is neither necessary nor sufficient for applicabil-
ity. Thus far, only a few people (mostly paraconsistent logicians)
have worked on these issues and they are yet to find their way
into mainstream philosophy of mathematics. But I'm hoping that
will change!

What are the most important open problems in the phi-
losophy of mathematics and what are the prospects for
progress?

There are many important questions in the philosophy of mathe-
matics and almost all of them are open: how does an (apparently)
a priori discipline like mathematics find applications in empirical
science?; what is the appropriate logic for mathematics?; what
status should we give to non-trivial inconsistent mathematical
theories?; what is the appropriate attitude to have towards the
posits of mathematics?; is mathematics a science of structures
(see Resnik, 1997 and Shapiro, 1997), what should count as an
appropriate standard of rigour, and can picture proofs meet such
standards (see Brown 1999), and many others. Here I'll say a little
about the issue of explanation in mathematics and its relationship
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to theories of explanation elsewhere in science. This issue has re-
ceived relatively little attention from philosophers of mathematics
(although see Baker 2005, Colyvan 2007, Mancosu 2001, Resnik
and Kushner 1987, and Steiner 1978).

It is generally thought that some proofs of theorems are ex-
planatory while others are not. Indeed, two different proofs of the
one theorem may differ in their explanatory power. The idea is
that anyone who properly understands an explanatory proof of a
theorem, understands why the theorem in question is true. While
a full understanding of an non-explanatory proof merely convinces
one that the theorem is true, but does not give any insight into
why it is true. It is sometimes thought that this is just another
way of marking the constructive-non-constructive distinction, but
that’s not right. Some non-constructive proofs are explanatory and
some constructive proofs fail to be explanatory. The problem for
the philosophy of mathematics is to give an account of the no-
tion of explanation at work here. It clearly can’t be any causal
account of explanation, such as those dominating discussions of
explanation in the philosophy of science literature. According to
the causal account of explanation, providing an explanation of an
event is (roughly) to trace the event’s causal history. No matter
what your theory of causation is, a mathematical truth cannot be
explained in terms of causal histories. There is no causal chain
that has as its end point Green’s Theorem. Proofs, whatever they
are, are not narratives about causal histories.

Does this mean that mathematical explanation is different in
kind from explanation elsewhere in science? I don’t think so. Apart
from a prima facie case (driven by simplicity considerations) that
there ought to be just one account of explanation, irrespective of
the domain in which the explanations arise, there is a more sub-
stantial reason for insisting on a unified account of explanation.
Often the explanation of a mathematical result, such as Green’s
Theorem, can “spill over” into empirical science. There are many
physical systems (for example fluids flowing through a region of
space) that can be modelled by differential equations and the ex-
planation of certain features of this system will be provided by the
relevant mathematical results. (For example, the proof of Green’s
theorem will provide the explanation of the relationship between
the flow in the interior of the region and on the boundary of the
region.) So if we are to treat mathematical explanation as differ-
ent in kind from explanation in physics, we will also, it seems,
need to countenance two kinds of explanation in physics. That, of
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course, is not to say that such a piecemeal account of explanation
is not right or can’t be made to work, but it does suggest that the
possibility of a unified account is worth exploring.

One initially promising candidate for a satisfying account of
explanation in mathematics is the unification account of explana-
tion (Kitcher 1981, Friedman 1974). According to this account, an
explanation is just a unification of the phenomenon in question.
Think, for example, of how one of the jewels of complex analysis,
the Residue Theorem, generalizes Cauchy’s Integral Theorem and
provides a means for calculating the integrals of many real-valued
functions. Or to take another example, consider how, Euler’s for-
mula, e® = cos z+isin « (where i = \/—1 and z is any real num-
ber), unifies analysis and trigonometry. Indeed, our understand-
ing of both analysis and trigonometry is significantly enhanced by
such results in complex analysis. According to the unificatory ac-
count of explanation, these unifications are genuinely explanatory.
Although there are various objections to the unification account of
explanation, it seems the one account with any chance of success
in mathematics and hence the only account with any chance of
yielding a unified account of explanation across both mathemat-
ical and other scientific domains. Or so it seems to me, at least.
In any case, I think that there is a great deal of interesting work
yet to be done on mathematical explanation and its relationship
to explanation in the broader scientific context.
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